Using movement ecology to investigate meningeal worm risk in moose, Alces alces

Author:

Ditmer Mark A12ORCID,McGraw Amanda M3,Cornicelli Louis4,Forester James D2,Mahoney Peter J5,Moen Ron A3,Stapleton Seth P12,St-Louis Véronique6,VanderWaal Kimberly7,Carstensen Michelle6

Affiliation:

1. Conservation Department, Minnesota Zoo, Apple Valley, MN, USA

2. Department of Fisheries, Wildlife & Conservation Biology, University of Minnesota, St. Paul, MN, USA

3. Natural Resources Research Institute and Department of Biology, University of Minnesota, Duluth, MN, USA

4. Wildlife Research Unit, Minnesota Department of Natural Resources, St. Paul, MN, USA

5. School of Environmental and Forest Sciences, University of Washington, Seattle, WA, USA

6. Wildlife Research Unit, Minnesota Department of Natural Resources, Forest Lake, MN, USA

7. Department of Veterinary Population Medicine, College of Veterinary Medicine, University of Minnesota, St. Paul, MN, USA

Abstract

Abstract Anthropogenic habitat change and moderating climatic conditions have enabled the northward geographic expansion of white-tailed deer, Odocoileus virginianus, and of the parasitic nematode (meningeal worm) it carries, Parelaphostrongylus tenuis. This expansion can have consequences in dead-end host species for other ungulates because meningeal worm reduces health, causes morbidity or direct mortality, and has been attributed to population declines. In northeastern Minnesota, which marks the southern extent of the bioclimatic range for moose (Alces alces), the moose population has declined more than 50% in the last decade, with studies detecting P. tenuis in 25–45% of necropsied animals. We assessed the factors that most commonly are associated with meningeal worm infection by linking moose movement ecology with known P. tenuis infection status from necropsy. We outfitted moose with GPS collars to assess their space use and cause-specific mortality. Upon death of the subject animal, we performed a necropsy to determine the cause of death and document meningeal worm infection. We then created statistical models to assess the relationship between meningeal worm infection and exposure to hypothesized factors of infection risk based on the space use of each moose by season. Predictors included land cover types, deer space use and density, environmental conditions, and demographics of individual moose (age and sex). Moose with autumn home ranges that included more upland shrub/conifer, and individuals with high proportions of wet environments, regardless of season, had increased infection risk. In contrast, the strongest relationships we found showed that high proportions of mixed and conifer forest within spring home ranges resulted in reduced risk of infection. The spring models showed the strongest relationships between exposure and infection, potentially due to moose foraging on ground vegetation during spring. By incorporating movement of moose into disease ecology, we were able to take a top-down approach to test hypothesized components of infection risk with actual spatial and temporal exposure of individual necropsied moose. The probability of infection for moose was not influenced by deer density, although deer densities did not vary greatly within the study area (2–4 deer/km2), highlighting the importance of also considering both moose space use and environmental conditions in understanding infection risk. We suggest management strategies that use a combination of deer and land management prescriptions designed to limit contact rates in susceptible populations.

Funder

Minnesota Zoo Foundation

Arts and Cultural Heritage Fund

Clean Water, Land and Legacy Amendment

Minnesota Department of Natural Resources

Minnesota Environment and Natural Resources Trust Fund

Legislative-Citizen Commission on Minnesota Resources

Publisher

Oxford University Press (OUP)

Subject

Nature and Landscape Conservation,Genetics,Animal Science and Zoology,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3