Tackling clinical heterogeneity across the amyotrophic lateral sclerosis–frontotemporal dementia spectrum using a transdiagnostic approach

Author:

Ahmed Rebekah M12ORCID,Bocchetta Martina3ORCID,Todd Emily G3ORCID,Tse Nga Yan2ORCID,Devenney Emma M2,Tu Sicong2,Caga Jashelle2,Hodges John R24,Halliday Glenda M2ORCID,Irish Muireann4ORCID,Kiernan Matthew C12,Piguet Olivier4,Rohrer Jonathan D3

Affiliation:

1. Memory and Cognition Clinic, Institute of Clinical Neurosciences, Royal Prince Alfred Hospital, Sydney 2050, Australia

2. Brain and Mind Centre, The University of Sydney, Sydney, NSW 2050, Australia

3. Dementia Research Centre, Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, University College London, London WC1E, UK

4. School of Psychology and Brain and Mind Centre, The University of Sydney, Sydney 2050, Australia

Abstract

Abstract The disease syndromes of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) display considerable clinical, genetic and pathological overlap, yet mounting evidence indicates substantial differences in progression and survival. To date, there has been limited examination of how profiles of brain atrophy might differ between clinical phenotypes. Here, we address this longstanding gap in the literature by assessing cortical and subcortical grey and white matter volumes on structural MRI in a large cohort of 209 participants. Cognitive and behavioural changes were assessed using the Addenbrooke’s Cognitive Examination and the Cambridge Behavioural Inventory. Relative to 58 controls, behavioural variant FTD (n = 58) and ALS–FTD (n = 41) patients displayed extensive atrophy of frontoinsular, cingulate, temporal and motor cortices, with marked subcortical atrophy targeting the hippocampus, amygdala, thalamus and striatum, with atrophy further extended to the brainstem, pons and cerebellum in the latter group. At the other end of the spectrum, pure-ALS patients (n = 52) displayed considerable frontoparietal atrophy, including right insular and motor cortices and pons and brainstem regions. Subcortical regions included the bilateral pallidum and putamen, but to a lesser degree than in the ALS–FTD and behavioural variant FTD groups. Across the spectrum the most affected region in all three groups was the insula, and specifically the anterior part (76–90% lower than controls). Direct comparison of the patient groups revealed disproportionate temporal atrophy and widespread subcortical involvement in ALS–FTD relative to pure-ALS. In contrast, pure-ALS displayed significantly greater parietal atrophy. Both behavioural variant FTD and ALS–FTD were characterized by volume decrease in the frontal lobes relative to pure-ALS. The motor cortex and insula emerged as differentiating structures between clinical syndromes, with bilateral motor cortex atrophy more pronounced in ALS–FTD compared with pure-ALS, and greater left motor cortex and insula atrophy relative to behavioural variant FTD. Taking a transdiagnostic approach, we found significant associations between abnormal behaviour and volume loss in a predominantly frontoinsular network involving the amygdala, striatum and thalamus. Our findings demonstrate the presence of distinct atrophy profiles across the ALS–FTD spectrum, with key structures including the motor cortex and insula. Notably, our results point to subcortical involvement in the origin of behavioural disturbances, potentially accounting for the marked phenotypic variability typically observed across the spectrum.

Funder

National Health and Medical Research Council of Australia

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3