Blinded study: prospectively defined high-frequency oscillations predict seizure outcome in individual patients

Author:

Dimakopoulos Vasileios1ORCID,Mégevand Pierre23,Boran Ece1,Momjian Shahan4,Seeck Margitta3,Vulliémoz Serge3,Sarnthein Johannes15ORCID

Affiliation:

1. Klinik für Neurochirurgie, UniversitätsSpital Zürich, Universität Zürich, Zürich, Switzerland

2. Département des neurosciences fondamentales, Faculté de médecine, Université de Genève, Geneva, Switzerland

3. Service de neurologie, Hôpitaux Universitaires de Genève, Geneva, Switzerland

4. Service de neurochirurgie, Hôpitaux Universitaires de Genève, Geneva, Switzerland

5. Klinisches Neurowissenschaften Zentrum, University Hospital Zurich, Zürich, Switzerland

Abstract

Abstract Interictal high-frequency oscillations are discussed as biomarkers for epileptogenic brain tissue that should be resected in epilepsy surgery to achieve seizure freedom. The prospective classification of tissue sampled by individual electrode contacts remains a challenge. We have developed an automated, prospective definition of clinically relevant high-frequency oscillations in intracranial EEG from Montreal and tested it in recordings from Zurich. We here validated the algorithm on intracranial EEG that was recorded in an independent epilepsy centre so that the analysis was blinded to seizure outcome. We selected consecutive patients who underwent resective epilepsy surgery in Geneva with post-surgical follow-up > 12 months. We analysed long-term recordings during sleep that we segmented into intervals of 5 min. High-frequency oscillations were defined in the ripple (80–250 Hz) and the fast ripple (250–500 Hz) frequency bands. Contacts with the highest rate of ripples co-occurring with fast ripples designated the relevant area. As a validity criterion, we calculated the test–retest reliability of the high-frequency oscillations area between the 5 min intervals (dwell time ≥50%). If the area was not fully resected and the patient suffered from recurrent seizures, this was classified as a true positive prediction. We included recordings from 16 patients (median age 32 years, range 18–53 years) with stereotactic depth electrodes and/or with subdural electrode grids (median follow-up 27 months, range 12–55 months). For each patient, we included several 5 min intervals (median 17 intervals). The relevant area had high test–retest reliability across intervals (median dwell time 95%). In two patients, the test–retest reliability was too low (dwell time < 50%) so that outcome prediction was not possible. The area was fully included in the resected volume in 2/4 patients who achieved post-operative seizure freedom (specificity 50%) and was not fully included in 9/10 patients with recurrent seizures (sensitivity 90%), leading to an accuracy of 79%. An additional exploratory analysis suggested that high-frequency oscillations were associated with interictal epileptic discharges only in channels within the relevant area and not associated in channels outside the area. We thereby validated the automated procedure to delineate the clinically relevant area in each individual patient of an independently recorded dataset and achieved the same good accuracy as in our previous studies. The reproducibility of our results across datasets is promising for a multicentre study to test the clinical application of high-frequency oscillations to guide epilepsy surgery.

Funder

Swiss National Science Foundation

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference38 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3