Neuroanatomical anomalies associated with rare AP4E1 mutations in people who stutter

Author:

Chow Ho Ming1234ORCID,Li Hua2,Liu Siyuan5ORCID,Frigerio-Domingues Carlos4ORCID,Drayna Dennis4

Affiliation:

1. Department of Communication Sciences and Disorders, University of Delaware, Newark, DE 19713, USA

2. Katzin Diagnostic & Research PET/MR Center, Nemours/Alfred duPont Hospital for Children, Wilmington, DE 19803, USA

3. Department of Psychiatry, University of Michigan, Ann Arbor, MI 48109, USA

4. Section on Genetics of Communication Disorders, NIDCD/NIH, Bethesda, MD 20892, USA

5. Section on Developmental Neurogenomics, NIMH/NIH, Bethesda, MD 20892, USA

Abstract

Abstract Developmental stuttering is a common speech disorder with strong genetic underpinnings. Recently, stuttering has been associated with mutations in genes involved in lysosomal enzyme trafficking. However, how these mutations affect the brains of people who stutter remains largely unknown. In this study, we compared grey matter volume and white matter fractional anisotropy between a unique group of seven subjects who stutter and carry the same rare heterozygous AP4E1 coding mutations and seven unrelated controls without such variants. The carriers of the AP4E1 mutations are members of a large Cameroonian family in which the association between AP4E1 and persistent stuttering was previously identified. Compared to controls, mutation carriers showed reduced grey matter volume in the thalamus, visual areas and the posterior cingulate cortex. Moreover, reduced fractional anisotropy was observed in the corpus callosum, consistent with the results of previous neuroimaging studies of people who stutter with unknown genetic backgrounds. Analysis of gene expression data showed that these structural differences appeared at the locations in which expression of AP4E1 is relatively high. Moreover, the pattern of grey matter volume differences was significantly associated with AP4E1 expression across the left supratentorial regions. This spatial congruency further supports the connection between AP4E1 mutations and the observed structural differences.

Funder

Intramural Research Program of the National Institute on Deafness and Other Communication Disorders

Extramural Research Program of the NIDCD

NIDCD or the National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3