In vivo myelin imaging and tissue microstructure in white matter hyperintensities and perilesional white matter

Author:

Ferris Jennifer K.1ORCID,Greeley Brian2ORCID,Vavasour Irene M.34,Kraeutner Sarah N.5,Rinat Shie1,Ramirez Joel67,Black Sandra E.67,Boyd Lara A.12ORCID

Affiliation:

1. Graduate Programs in Rehabilitation Sciences, University of British Columbia , Vancouver , Canada

2. Department of Physical Therapy, University of British Columbia , Vancouver , Canada

3. Department of Radiology, The University of British Columbia , Vancouver , Canada

4. UBC MRI Research Centre, Faculty of Medicine, University of British Columbia , Vancouver , Canada

5. Department of Psychology, University of British Columbia , Okanagan, Kelowna , Canada

6. LC Campbell Cognitive Neurology Research Unit, Dr Sandra Black Centre for Brain Resilience and Recovery , Toronto , Canada

7. Hurvitz Brain Sciences Research Program, Sunnybrook Research Institute, University of Toronto , Toronto , Canada

Abstract

Abstract White matter hyperintensities negatively impact white matter structure and relate to cognitive decline in aging. Diffusion tensor imaging detects changes to white matter microstructure, both within the white matter hyperintensity and extending into surrounding (perilesional) normal-appearing white matter. However, diffusion tensor imaging markers are not specific to tissue components, complicating the interpretation of previous microstructural findings. Myelin water imaging is a novel imaging technique that provides specific markers of myelin content (myelin water fraction) and interstitial fluid (geometric mean T2). Here we combined diffusion tensor imaging and myelin water imaging to examine tissue characteristics in white matter hyperintensities and perilesional white matter in 80 individuals (47 older adults and 33 individuals with chronic stroke). To measure perilesional normal-appearing white matter, white matter hyperintensity masks were dilated in 2 mm segments up to 10 mm in distance from the white matter hyperintensity. Fractional anisotropy, mean diffusivity, myelin water fraction, and geometric mean T2 were extracted from white matter hyperintensities and perilesional white matter. We observed a spatial gradient of higher mean diffusivity and geometric mean T2, and lower fractional anisotropy, in the white matter hyperintensity and perilesional white matter. In the chronic stroke group, myelin water fraction was reduced in the white matter hyperintensity but did not show a spatial gradient in perilesional white matter. Across the entire sample, white matter metrics within the white matter hyperintensity related to whole-brain white matter hyperintensity volume; with increasing white matter hyperintensity volume there was increased mean diffusivity and geometric mean T2, and decreased myelin water fraction in the white matter hyperintensity. Normal-appearing white matter adjacent to white matter hyperintensities exhibits characteristics of a transitional stage between healthy white matter and white matter hyperintensities. This effect was observed in markers sensitive to interstitial fluid, but not in myelin water fraction, the specific marker of myelin concentration. Within the white matter hyperintensity, interstitial fluid was higher and myelin concentration was lower in individuals with more severe cerebrovascular disease. Our data suggests white matter hyperintensities have penumbra-like effects in perilesional white matter that specifically reflect increased interstitial fluid, with no changes to myelin concentration. In contrast, within the white matter hyperintensity there are varying levels of demyelination, which vary based on the severity of cerebrovascular disease. Diffusion tensor imaging and myelin imaging may be useful clinical markers to predict white matter hyperintensity formation, and to stage neuronal damage within white matter hyperintensities.

Funder

Canadian Partnership for Stroke Recovery

Canadian Institutes for Health Research

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3