Disruption of cellular iron homeostasis by IREB2 missense variants causes severe neurodevelopmental delay, dystonia and seizures

Author:

Maio Nunziata1ORCID,Saneto Russell P.23,Steet Richard4,Sotero de Menezes Marcio A.5,Skinner Cindy4,Rouault Tracey A.1ORCID

Affiliation:

1. Molecular Medicine Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA

2. Neuroscience Institute, Center for Integrative Brain Research, Seattle Children’s Hospital, Seattle, WA 98105, USA

3. Program for Mitochondrial Medicine and Metabolism, Division of Pediatric Neurology, University of Washington, Seattle, WA 98105, USA

4. Greenwood Genetic Center, Greenwood, SC 29646, USA

5. Swedish Neuroscience Institute, Pediatric Neurology, Seattle, WA 98122, USA

Abstract

Abstract Altered brain iron homeostasis can contribute to neurodegeneration by interfering with the delivery of the iron needed to support key cellular processes, including mitochondrial respiration, synthesis of myelin and essential neurotransmitters. Intracellular iron homeostasis in mammals is maintained by two homologous ubiquitously expressed iron-responsive element-binding proteins (IRP1 and IRP2). Using exome sequencing, two patients with severe neurodegenerative disease and bi-allelic mutations in the gene IREB2 were first identified and clinically characterized in 2019. Here, we report the case of a 7-year-old male patient with compound heterozygous missense variants in IREB2, whose neurological features resembled those of the two previously reported IRP2-deficient patients, including a profound global neurodevelopmental delay and dystonia. Biochemical characterization of a lymphoblast cell line derived from the patient revealed functional iron deficiency, altered post-transcriptional regulation of iron metabolism genes and mitochondrial dysfunction. The iron metabolism abnormalities of the patient cell line were reversed by lentiviral-mediated restoration of IREB2 expression. These results, in addition to confirming the essential role of IRP2 in the regulation of iron metabolism in humans, expand the scope of the known IRP2-related neurodegenerative disorders and underscore that IREB2 pathological variants may impact the iron-responsive element-binding activity of IRP2 with varying degrees of severity. The three severely affected patients identified so far all suffered from complete loss of function of IRP2, raising the possibility that individuals with significant but incomplete loss of IRP2 function may develop less severe forms of the disease, analogous to other human conditions that present with a wide range of phenotypic manifestations.

Funder

Eunice Kennedy Shriver National Institute of Child Health and Human Development

National Institute of Neurological Disorders and Stroke

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3