A novel framework to estimate cognitive impairment via finger interaction with digital devices

Author:

Holmes Ashley A1,Tripathi Shikha2,Katz Emily1,Mondesire-Crump Ijah1,Mahajan Rahul13,Ritter Aaron4,Arroyo-Gallego Teresa1ORCID,Giancardo Luca2ORCID

Affiliation:

1. nQ Medical , Cambridge, MA 02142 , USA

2. Center for Precision Health, School of Biomedical Informatics, University of Texas Health Science Center at Houston , Houston, TX 77030 , USA

3. Division of Neurocritical Care, Department of Neurology, Brigham & Women’s Hospital , Boston, MA 02115 , USA

4. Cleveland Clinic Lou Ruvo Center for Brain Health, Cleveland Clinic , Las Vegas, NV 89106 , USA

Abstract

Abstract Measuring cognitive function is essential for characterizing brain health and tracking cognitive decline in Alzheimer’s Disease and other neurodegenerative conditions. Current tools to accurately evaluate cognitive impairment typically rely on a battery of questionnaires administered during clinical visits which is essential for the acquisition of repeated measurements in longitudinal studies. Previous studies have shown that the remote data collection of passively monitored daily interaction with personal digital devices can measure motor signs in the early stages of synucleinopathies, as well as facilitate longitudinal patient assessment in the real-world scenario with high patient compliance. This was achieved by the automatic discovery of patterns in the time series of keystroke dynamics, i.e. the time required to press and release keys, by machine learning algorithms. In this work, our hypothesis is that the typing patterns generated from user-device interaction may reflect relevant features of the effects of cognitive impairment caused by neurodegeneration. We use machine learning algorithms to estimate cognitive performance through the analysis of keystroke dynamic patterns that were extracted from mechanical and touchscreen keyboard use in a dataset of cognitively normal (n = 39, 51% male) and cognitively impaired subjects (n = 38, 60% male). These algorithms are trained and evaluated using a novel framework that integrates items from multiple neuropsychological and clinical scales into cognitive subdomains to generate a more holistic representation of multifaceted clinical signs. In our results, we see that these models based on typing input achieve moderate correlations with verbal memory, non-verbal memory and executive function subdomains [Spearman’s ρ between 0.54 (P < 0.001) and 0.42 (P < 0.001)] and a weak correlation with language/verbal skills [Spearman’s ρ 0.30 (P < 0.05)]. In addition, we observe a moderate correlation between our typing-based approach and the Total Montreal Cognitive Assessment score [Spearman’s ρ 0.48 (P < 0.001)]. Finally, we show that these machine learning models can perform better by using our subdomain framework that integrates the information from multiple neuropsychological scales as opposed to using the individual items that make up these scales. Our results support our hypothesis that typing patterns are able to reflect the effects of neurodegeneration in mild cognitive impairment and Alzheimer’s disease and that this new subdomain framework both helps the development of machine learning models and improves their interpretability.

Funder

Center of Biomedical and Research Excellence

nQ Medical Inc

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3