Ictal neural oscillatory alterations precede sudden unexpected death in epilepsy

Author:

Gu Bin123ORCID,Levine Noah G.4,Xu Wenjing25,Lynch Rachel M.6,Pardo-Manuel de Villena Fernando67,Philpot Benjamin D.238

Affiliation:

1. Department of Neuroscience, Ohio State University, Columbus, OH, USA

2. Department of Cell Biology and Physiology, University of North Carolina, Chapel Hill, NC, USA

3. Neuroscience Center, University of North Carolina, Chapel Hill, NC, USA

4. Electrical and Computer Engineering Program, Ohio State University, Columbus, OH, USA

5. Department of Physiology and Cell Biology, Ohio State University, Columbus, OH, USA

6. Department of Genetics, University of North Carolina, Chapel Hill, NC, USA

7. Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA

8. Carolina Institute for Developmental Disabilities, University of North Carolina, Chapel Hill, NC, USA

Abstract

Abstract Sudden unexpected death in epilepsy is the most catastrophic outcome of epilepsy. Each year there are as many as 1.65 cases of such death for every 1000 individuals with epilepsy. Currently, there are no methods to predict or prevent this tragic event, due in part to a poor understanding of the pathologic cascade that leads to death following seizures. We recently identified enhanced seizure-induced mortality in four inbred strains from the genetically diverse Collaborative Cross mouse population. These mouse models of sudden unexpected death in epilepsy provide a unique tool to systematically examine the physiological alterations during fatal seizures, which can be studied in a controlled environment and with consideration of genetic complexity. Here, we monitored the brain oscillations and heart functions before, during, and after non-fatal and fatal seizures using a flurothyl-induced seizure model in freely moving mice. Compared with mice that survived seizures, non-survivors exhibited significant suppression of brainstem neural oscillations that coincided with cortical epileptic activities and tachycardia during the ictal phase of a fatal seizure. Non-survivors also exhibited suppressed delta (0.5–4 Hz)/gamma (30–200 Hz) phase-amplitude coupling in cortex but not in brainstem. A connectivity analysis revealed elevated synchronization of cortex and brainstem oscillations in the delta band during fatal seizures compared with non-fatal seizures. The dynamic ictal oscillatory and connectivity features of fatal seizures provide insights into sudden unexpected death in epilepsy and may suggest biomarkers and eventual therapeutic targets.

Funder

Citizens United for Research in Epilepsy

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3