Altered alpha and theta oscillations correlate with sequential working memory in Parkinson’s disease

Author:

Ye Zheng1ORCID,Heldmann Marcus23,Herrmann Lisa2,Brüggemann Norbert24ORCID,Münte Thomas F23

Affiliation:

1. Institute of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences , Shanghai 200031 , China

2. Department of Neurology, University of Lübeck , Lübeck 23538 , Germany

3. Institute of Psychologie II, University of Lübeck , Lübeck 23538 , Germany

4. Institute of Neurogenetics, University of Lübeck , Lübeck 23538 , Germany

Abstract

Abstract Daily activities such as preparing a meal rely on the ability to arrange thoughts and actions in the right order. Patients with Parkinson’s disease have difficulties in sequencing tasks. Their deficits in sequential working memory have been associated with basal ganglia dysfunction. Here we demonstrate that altered parietal alpha and theta oscillations correlate with sequential working memory in Parkinson’s disease. We included 15 patients with Parkinson’s disease (6 women, mean age: 66.0 years), 24 healthy young (14 women, mean age: 24.1 years), and 16 older participants (7 women, mean age: 68.6 years). All participants completed a picture ordering task with scalp electroencephalogram (EEG) recording, where they arranged five pictures in a specific order and memorized them over a delay. When encoding and maintaining picture sequences, patients with Parkinson’s disease showed a lower baseline alpha peak frequency with higher alpha power than healthy young and older participants. Patients with a higher baseline alpha power responded more slowly for ordered trials. When manipulating picture sequences, patients with Parkinson’s disease showed a lower frequency of maximal power change for random versus ordered trials than healthy young and older participants. Healthy older participants showed a higher frequency of maximal power change than healthy young participants. Compared with patients with frequency of maximal power change in the alpha band (8–15 Hz), patients with frequency of maximal power change in the theta band (4–7 Hz) showed a higher ordering-related accuracy cost (random versus ordered) in the main task and tended to respond more slowly and less accurately in an independent working memory test. In conclusion, altered baseline alpha oscillations and task-dependent modulation of alpha and theta oscillations may be neural markers of poor sequential working memory in Parkinson’s disease.

Funder

National Natural Science Foundation of China

German Research Foundation

Alexander von Humboldt Foundation

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3