Longitudinal tracking of axonal loss using diffusion magnetic resonance imaging in multiple sclerosis

Author:

Boonstra Frederique M.1,Clough Meaghan1,Strik Myrte2,van der Walt Anneke1,Butzkueven Helmut1,White Owen B.1,Law Meng13,Fielding Joanne1,Kolbe Scott C.13

Affiliation:

1. Department of Neuroscience, Central Clinical School, Monash University, Level 6, 99 Commercial Rd, Prahran 3005, Australia

2. Department of Medicine and Radiology, University of Melbourne, Parkville 3010, Australia

3. Department Radiology, Alfred Health, Prahran 3005, Australia

Abstract

Abstract Axonal loss in the CNS is a key driver of progressive neurological impairments in people with multiple sclerosis. Currently, there are no established methods for tracking axonal loss clinically. This study aimed to determine the sensitivity of longitudinal diffusion MRI-derived fibre-specific measures of axonal loss in people with multiple sclerosis. Fibre measures were derived from diffusion MRI acquired as part of a standard radiological MRI protocol and were compared (i) to establish measures of neuro-axonal degeneration: brain parenchymal fraction and retinal nerve fibre layer thickness and (ii) between different disease stages: clinically isolated syndrome and early/late relapsing–remitting multiple sclerosis. Retrospectively identified data from 59 people with multiple sclerosis (18 clinically isolated syndrome, 22 early and 19 late relapsing–remitting) who underwent diffusion MRI as part of their routine clinical monitoring were collated and analysed. Twenty-six patients had 1-year and 14 patients had a 2-year follow-up. Brain parenchymal fraction was calculated from 3D MRI scans, and fibre-specific measures were calculated from diffusion MRI using multi-tissue constrained spherical deconvolution. At each study visit, patients underwent optical coherence tomography to determine retinal nerve fibre layer thickness, and standard neurological assessment expanded the disability status scale. We found a significant annual fibre-specific neuro-axonal degeneration (mean ± SD = −3.49 ± 3.32%, P < 0.001) that was ∼7 times larger than the annual change of brain parenchymal fraction (−0.53 ± 0.95%, P < 0.001), and more than four times larger than annual retinal nerve fibre layer thinning (−0.75 ± 2.50% P = 0.036). Only fibre-specific measures showed a significant difference in annual degeneration between the disease stages (P = 0.029). Reduced brain parenchymal fraction, retinal nerve fibre layer thickness and fibre-specific measures were moderately related to higher expanded disability status scale (rho = −0.368, rho = −0.408 and rho = −0.365, respectively). Fibre-specific measures can be measured from data collected within a standard radiological multiple sclerosis study and are substantially more sensitive to longitudinal change compared with brain atrophy and retinal nerve fibre layer thinning.

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3