Structural and functional brain alterations in patients with myasthenia gravis

Author:

Klaus Benita12,Müller Patrick12,van Wickeren Nora12,Dordevic Milos12,Schmicker Marlen1,Zdunczyk Yael2,Brigadski Tanja34,Leßmann Volkmar35ORCID,Vielhaber Stefan125,Schreiber Stefanie125ORCID,Müller Notger G.126

Affiliation:

1. German Centre for Neurodegenerative Diseases, 39120 Magdeburg, Germany

2. Department of Neurology, Otto-von-Guericke University, 39120 Magdeburg, Germany

3. Institute of Physiology, Otto-von-Guericke University, 39120 Magdeburg, Germany

4. Department of Informatics and Microsystems Technology, University of Kaiserslautern, 67659 Zweibrücken, Germany

5. Center for Behavioral Brain Sciences (CBBS), 39120 Magdeburg, Germany

6. Faculty of Health Sciences, University of Potsdam, 14476 Potsdam, Germany

Abstract

Abstract Myasthenia gravis is an autoimmune disease affecting neuromuscular transmission and causing skeletal muscle weakness. Additionally, systemic inflammation, cognitive deficits and autonomic dysfunction have been described. However, little is known about myasthenia gravis-related reorganization of the brain. In this study, we thus investigated the structural and functional brain changes in myasthenia gravis patients. Eleven myasthenia gravis patients (age: 70.64 ± 9.27; 11 males) were compared to age-, sex- and education-matched healthy controls (age: 70.18 ± 8.98; 11 males). Most of the patients (n = 10, 0.91%) received cholinesterase inhibitors. Structural brain changes were determined by applying voxel-based morphometry using high-resolution T1-weighted sequences. Functional brain changes were assessed with a neuropsychological test battery (including attention, memory and executive functions), a spatial orientation task and brain-derived neurotrophic factor blood levels. Myasthenia gravis patients showed significant grey matter volume reductions in the cingulate gyrus, in the inferior parietal lobe and in the fusiform gyrus. Furthermore, myasthenia gravis patients showed significantly lower performance in executive functions, working memory (Spatial Span, P = 0.034, d = 1.466), verbal episodic memory (P = 0.003, d = 1.468) and somatosensory-related spatial orientation (Triangle Completion Test, P = 0.003, d = 1.200). Additionally, serum brain-derived neurotrophic factor levels were significantly higher in myasthenia gravis patients (P = 0.001, d = 2.040). Our results indicate that myasthenia gravis is associated with structural and functional brain alterations. Especially the grey matter volume changes in the cingulate gyrus and the inferior parietal lobe could be associated with cognitive deficits in memory and executive functions. Furthermore, deficits in somatosensory-related spatial orientation could be associated with the lower volumes in the inferior parietal lobe. Future research is needed to replicate these findings independently in a larger sample and to investigate the underlying mechanisms in more detail.

Funder

German Center for Neurodegenerative Diseases

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3