Meta-topologies define distinct anatomical classes of brain tumours linked to histology and survival

Author:

Kernbach Julius M123,Delev Daniel123,Neuloh Georg23,Clusmann Hans23,Bzdok Danilo45,Eickhoff Simon B67ORCID,Staartjes Victor E8,Vasella Flavio8ORCID,Weller Michael8ORCID,Regli Luca8ORCID,Serra Carlo8ORCID,Krayenbühl Niklaus89ORCID,Akeret Kevin8ORCID

Affiliation:

1. Neurosurgical Artificial Intelligence Laboratory Aachen (NAILA), RWTH Aachen University Hospital , Pauwelsstrasse 30, 52074 Aachen , Germany

2. Department of Neurosurgery, Faculty of Medicine, RWTH Aachen University , Pauwelsstrasse 30, 52074 Aachen , Germany

3. Center for Integrated Oncology, Düsseldorf (CIO ABCD), Universities Aachen , Bonn, Cologne , Germany

4. Department of Biomedical Engineering, McConnell Brain Imaging Centre, Montreal Neurological Institute, Faculty of Medicine, School of Computer Science, McGill University , 845 Sherbrooke St W, Montreal, Quebec H3A 0G4 , Canada

5. Mila—Quebec Artificial Intelligence Institute , 6666 Rue Saint-Urbain, Montreal, Quebec H2S 3H1 , Canada

6. Institute of Neuroscience and Medicine (INM-7), Research Centre Jülich , Wilhelm Johnen Strasse, 52428 Jülich , Germany

7. Institute of Systems Neuroscience, Medical Faculty, Heinrich Heine University Düsseldorf , Moorenstrasse 5, 40225 Düsseldorf , Germany

8. Department of Neurosurgery, Clinical Neuroscience Center, University Hospital and University of Zurich , Frauenklinikstrasse 10, 8091 Zurich , Switzerland

9. Division of Pediatric Neurosurgery, University Children's Hospital , Steinwiesstrasse 75, 8032 Zurich , Switzerland

Abstract

AbstractThe current World Health Organization classification integrates histological and molecular features of brain tumours. The aim of this study was to identify generalizable topological patterns with the potential to add an anatomical dimension to the classification of brain tumours. We applied non-negative matrix factorization as an unsupervised pattern discovery strategy to the fine-grained topographic tumour profiles of 936 patients with neuroepithelial tumours and brain metastases. From the anatomical features alone, this machine learning algorithm enabled the extraction of latent topological tumour patterns, termed meta-topologies. The optimal part-based representation was automatically determined in 10 000 split-half iterations. We further characterized each meta-topology’s unique histopathologic profile and survival probability, thus linking important biological and clinical information to the underlying anatomical patterns. In neuroepithelial tumours, six meta-topologies were extracted, each detailing a transpallial pattern with distinct parenchymal and ventricular compositions. We identified one infratentorial, one allopallial, three neopallial (parieto-occipital, frontal, temporal) and one unisegmental meta-topology. Each meta-topology mapped to distinct histopathologic and molecular profiles. The unisegmental meta-topology showed the strongest anatomical–clinical link demonstrating a survival advantage in histologically identical tumours. Brain metastases separated to an infra- and supratentorial meta-topology with anatomical patterns highlighting their affinity to the cortico-subcortical boundary of arterial watershed areas.Using a novel data-driven approach, we identified generalizable topological patterns in both neuroepithelial tumours and brain metastases. Differences in the histopathologic profiles and prognosis of these anatomical tumour classes provide insights into the heterogeneity of tumour biology and might add to personalized clinical decision-making.

Funder

Bundesministerium für Bildung und Forschung

Prof. Dr. med. Karl und Rena Theiler-Haag foundation

Forschungskredit of the University of Zurich

Theodor und Ida Herzog-Egli foundation

Publisher

Oxford University Press (OUP)

Subject

Neurology,Cellular and Molecular Neuroscience,Biological Psychiatry,Psychiatry and Mental health

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3