Restoration of motor function after CNS damage: is there a potential beyond spontaneous recovery?

Author:

Dietz Volker1

Affiliation:

1. Spinal Cord Injury Center, University Hospital Balgrist, Zürich, Switzerland

Abstract

Abstract What determines the effectiveness of neurorehabilitation approaches on the outcome of function in stroke or spinal cord injured subjects? Many studies claim that an improvement of function is based on the intensity of training, while some actual studies indicate no additional gain in function by a more intensive training after a stroke. Inherent factors seem to determine outcome, such as damage of specific tracts in stroke and level of lesion in spinal cord injured subjects, while the improvement of function achieved by an intensive training is small in relation to the spontaneous recovery. It is argued that an individual capacity of recovery exists depending on such factors. This capacity can be exploited by a repetitive execution of functional movements (supported as far as required), irrespective of the intensity and technology applied. Elderly subjects have difficulties to translate the recovery of motor deficit into function. Alternative, non-training approaches to restore motor function, such as epidural or deep brain stimulation as well as CNS repair are still in an early clinical or in a translational stage.

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference49 articles.

1. Neurorehabilitation: Applied neuroplasticity;Khan;J Neurol,2017

2. Harnessing neuroplasticity for clinical applications;Cramer;Brain,2011

3. Shaping plasticity to enhance recovery after injury;Dancause;Prog Brain Res,2011

4. Concepts of CNS plasticity in the context of brain damage and repair;Stein;J Head Trauma Rehabil,2003

5. Neuroplasticity promoted by task complexity;Carey;Exerc Sport Sci Rev,2005

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3