Default mode network failure and neurodegeneration across aging and amnestic and dysexecutive Alzheimer’s disease

Author:

Corriveau-Lecavalier Nick1ORCID,Gunter Jeffrey L2,Kamykowski Michael3,Dicks Ellen1,Botha Hugo1ORCID,Kremers Walter K4,Graff-Radford Jonathan1ORCID,Wiepert Daniela A1,Schwarz Christopher G2ORCID,Yacoub Essa5,Knopman David S1ORCID,Boeve Bradley F1ORCID,Ugurbil Kamil5,Petersen Ronald C1,Jack Clifford R2ORCID,Terpstra Melissa J56,Jones David T12ORCID

Affiliation:

1. Department of Neurology, Mayo Clinic , Rochester, MN 55905 , USA

2. Department of Radiology, Mayo Clinic , Rochester, MN 55905 , USA

3. Department of Information Technology, Mayo Clinic , Rochester, MN 55905 , USA

4. Department of Quantitative Health Sciences, Mayo Clinic , Rochester, MN 55905 , USA

5. Department of Radiology, University of Minnesota , Minneapolis, MN 55455 , USA

6. Department of Radiology, University of Missouri , Columbia, MO 65211 , USA

Abstract

AbstractFrom a complex systems perspective, clinical syndromes emerging from neurodegenerative diseases are thought to result from multiscale interactions between aggregates of misfolded proteins and the disequilibrium of large-scale networks coordinating functional operations underpinning cognitive phenomena. Across all syndromic presentations of Alzheimer’s disease, age-related disruption of the default mode network is accelerated by amyloid deposition. Conversely, syndromic variability may reflect selective neurodegeneration of modular networks supporting specific cognitive abilities. In this study, we leveraged the breadth of the Human Connectome Project-Aging cohort of non-demented individuals (N = 724) as a normative cohort to assess the robustness of a biomarker of default mode network dysfunction in Alzheimer’s disease, the network failure quotient, across the aging spectrum. We then examined the capacity of the network failure quotient and focal markers of neurodegeneration to discriminate patients with amnestic (N = 8) or dysexecutive (N = 10) Alzheimer’s disease from the normative cohort at the patient level, as well as between Alzheimer’s disease phenotypes. Importantly, all participants and patients were scanned using the Human Connectome Project-Aging protocol, allowing for the acquisition of high-resolution structural imaging and longer resting-state connectivity acquisition time. Using a regression framework, we found that the network failure quotient related to age, global and focal cortical thickness, hippocampal volume, and cognition in the normative Human Connectome Project-Aging cohort, replicating previous results from the Mayo Clinic Study of Aging that used a different scanning protocol. Then, we used quantile curves and group-wise comparisons to show that the network failure quotient commonly distinguished both dysexecutive and amnestic Alzheimer’s disease patients from the normative cohort. In contrast, focal neurodegeneration markers were more phenotype-specific, where the neurodegeneration of parieto-frontal areas associated with dysexecutive Alzheimer’s disease, while the neurodegeneration of hippocampal and temporal areas associated with amnestic Alzheimer’s disease. Capitalizing on a large normative cohort and optimized imaging acquisition protocols, we highlight a biomarker of default mode network failure reflecting shared system-level pathophysiological mechanisms across aging and dysexecutive and amnestic Alzheimer’s disease and biomarkers of focal neurodegeneration reflecting distinct pathognomonic processes across the amnestic and dysexecutive Alzheimer’s disease phenotypes. These findings provide evidence that variability in inter-individual cognitive impairment in Alzheimer’s disease may relate to both modular network degeneration and default mode network disruption. These results provide important information to advance complex systems approaches to cognitive aging and degeneration, expand the armamentarium of biomarkers available to aid diagnosis, monitor progression and inform clinical trials.

Funder

National Institutes of Health

Robert Wood Johnson Foundation

Elsie and Marvin Dekelboum Family Foundation

Liston Family

GHR

Minnesota Partnership

Mayo Foundation

National Institute On Aging of the NIH

McDonnell Center for Systems Neuroscience

Washington University in St. Louis

Publisher

Oxford University Press (OUP)

Subject

Neurology,Cellular and Molecular Neuroscience,Biological Psychiatry,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3