Microglial extracellular vesicles induce Alzheimer’s disease-related cortico-hippocampal network dysfunction

Author:

Falcicchia Chiara1,Tozzi Francesca12,Gabrielli Martina3,Amoretti Stefano1,Masini Greta1,Nardi Gabriele4,Guglielmo Stefano12,Ratto Gian Michele4,Arancio Ottavio5,Verderio Claudia3,Origlia Nicola1ORCID

Affiliation:

1. National Research Council (CNR) Institute of Neuroscience , Pisa 56124 , Italy

2. Bio@SNS laboratory, Scuola Normale Superiore , Pisa 56124 , Italy

3. National Research Council (CNR) Institute of Neuroscience, Vedano al Lambro , Monza (MB) 20854 , Italy

4. National Enterprise for nanoScience and nanoTechnology (NEST), Istituto Nanoscienze, Consiglio Nazionale delle Ricerche (CNR) and Scuola Normale Superiore Pisa , Pisa 56127 , Italy

5. Department of Pathology and Cell Biology, The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain and Department of Medicine, Columbia University , New York, NY 10032 , USA

Abstract

Abstract β-Amyloid is one of the main pathological hallmarks of Alzheimer’s disease and plays a major role in synaptic dysfunction. It has been demonstrated that β-amyloid can elicit aberrant excitatory activity in cortical-hippocampal networks, which is associated with behavioural abnormalities. However, the mechanism of the spreading of β-amyloid action within a specific circuitry has not been elucidated yet. We have previously demonstrated that the motion of microglia-derived large extracellular vesicles carrying β-amyloid, at the neuronal surface, is crucial for the initiation and propagation of synaptic dysfunction along the entorhinal–hippocampal circuit. Here, using chronic EEG recordings, we show that a single injection of extracellular vesicles carrying β-amyloid into the mouse entorhinal cortex could trigger alterations in the cortical and hippocampal activity that are reminiscent of those found in Alzheimer’s disease mouse models and human patients. The development of EEG abnormalities was associated with progressive memory impairment as assessed by an associative (object-place context recognition) and non-associative (object recognition) task. Importantly, when the motility of extracellular vesicles, carrying β-amyloid, was inhibited, the effect on network stability and memory function was significantly reduced. Our model proposes a new biological mechanism based on the extracellular vesicles–mediated progression of β-amyloid pathology and offers the opportunity to test pharmacological treatments targeting the early stages of Alzheimer’s disease.

Funder

Ministry of University and Research-PNRR

American National Institutes of Health

Publisher

Oxford University Press (OUP)

Subject

Neurology,Cellular and Molecular Neuroscience,Biological Psychiatry,Psychiatry and Mental health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3