Regional rather than global brain age mediates cognitive function in cerebral small vessel disease

Author:

Lee Pei-Lin1,Kuo Chen-Yuan2,Wang Pei-Ning2345,Chen Liang-Kung256,Lin Ching-Po147ORCID,Chou Kun-Hsien14,Chung Chih-Ping23ORCID

Affiliation:

1. Institute of Neuroscience, National Yang Ming Chiao Tung University , Taipei , Taiwan

2. Aging and Health Research Center, National Yang Ming Chiao Tung University , Taipei , Taiwan

3. Department of Neurology, Neurological Institute, Taipei Veterans General Hospital , Taipei , Taiwan

4. Brain Research Center, National Yang Ming Chiao Tung University , Taipei , Taiwan

5. Center for Geriatric and Gerontology, Taipei Veterans General Hospital , Taipei , Taiwan

6. Taipei Municipal Gan-Dau Hospital (managed by Taipei Veterans General Hospital) , Taipei , Taiwan

7. Department of Biomedical Imaging and Radiological Sciences, National Yang Ming Chiao Tung University , Taipei , Taiwan

Abstract

Abstract The factors and mechanisms underlying the heterogeneous cognitive outcomes of cerebral small vessel disease are largely unknown. Brain biological age can be estimated by machine learning algorithms that use large brain MRI data sets to integrate and compute neuroimaging-derived age-related features. Predicted and chronological ages difference (brain-age gap) reflects advanced or delayed brain aging in an individual. The present study firstly reports the brain aging status of cerebral small vessel disease. In addition, we investigated whether global or certain regional brain age could mediate the cognitive functions in cerebral small vessel disease. Global and regional (400 cortical, 14 subcortical and 28 cerebellum regions of interest) brain-age prediction models were constructed using grey matter features from MRI of 1482 healthy individuals (age: 18–92 years). Predicted and chronological ages differences were obtained and then applied to non-stroke, non-demented individuals, aged ≥50 years, from another community-dwelling population (I-Lan Longitudinal Aging Study cohort). Among the 734 participants from the I-Lan Longitudinal Aging Study cohort, 124 were classified into the cerebral small vessel disease group. The cerebral small vessel disease group demonstrated significantly poorer performances in global cognitive, verbal memory and executive functions than that of non-cerebral small vessel disease group. Global brain-age gap was significantly higher in the cerebral small vessel disease (3.71 ± 7.60 years) than that in non-cerebral small vessel disease (−0.43 ± 9.47 years) group (P = 0.003, η2 = 0.012). There were 82 cerebral cortical, 3 subcortical and 4 cerebellar regions showing significantly different brain-age gap between the cerebral small vessel disease and non-cerebral small vessel disease groups. Global brain-age gap failed to mediate the relationship between cerebral small vessel disease and any of the cognitive domains. In 89 regions with increased brain-age gap in the cerebral small vessel disease group, seven regional brain-age gaps were able to show significant mediation effects in cerebral small vessel disease-related cognitive impairment (we set the statistical significance P < 0.05 uncorrected in 89 mediation models). Of these, the left thalamus and left hippocampus brain-age gap explained poorer global cognitive performance in cerebral small vessel disease. We demonstrated the interconnections between cerebral small vessel disease and brain age. Strategic brain aging, i.e. advanced brain aging in critical regions, may be involved in the pathophysiology of cerebral small vessel disease-related cognitive impairment. Regional rather than global brain-age gap could potentially serve as a biomarker for predicting heterogeneous cognitive outcomes in patients with cerebral small vessel disease.

Funder

Ministry of Science and Technology, Taiwan

Taipei Veterans General Hospital

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3