Zebrafish studies identify serotonin receptors mediating antiepileptic activity in Dravet syndrome

Author:

Griffin Aliesha L1,Jaishankar Priyadarshini2,Grandjean Jean-Marc3,Olson Steven H3,Renslo Adam R2,Baraban Scott C1

Affiliation:

1. Epilepsy Research Laboratory and Weill Institute for Neuroscience, Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94122, USA

2. Department of Pharmaceutical Chemistry and Small Molecule Discovery Center, University of California San Francisco, CA 94143, USA

3. Department of Neurology, Institute for Neurodegenerative Diseases and Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA 94143, USA

Abstract

Abstract Dravet syndrome is a life-threatening early-onset epilepsy not well controlled by antiepileptic drugs. Drugs that modulate serotonin (5-HT) signalling, including clemizole, locaserin, trazodone and fenfluramine, have recently emerged as potential treatment options for Dravet syndrome. To investigate the serotonin receptors that could moderate this antiepileptic activity, we designed and synthesized 28 novel analogues of clemizole, obtained receptor binding affinity profiles, and performed in vivo screening in a scn1lab mutant zebrafish (Danio rerio) model which recapitulates critical clinical features of Dravet syndrome. We discovered three clemizole analogues with 5-HT receptor binding that exert powerful antiepileptic activity. Based on structure–activity relationships and medicinal chemistry-based analysis, we then screened an additional set of known 5-HT receptor specific drug candidates. Integrating our in vitro and in vivo data implicates 5-HT2B receptors as a critical mediator in the mechanism of seizure suppression observed in Dravet syndrome patients treated with 5-HT modulating drugs.

Funder

National Institute of Neurological Disorders and Stroke

University of California

Dravet syndrome Foundation

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3