Potential for in vivo visualization of intracellular pH gradient in the brain using PET imaging

Author:

Yamasaki Tomoteru1ORCID,Mori Wakana1,Ohkubo Takayuki12,Hiraishi Atsuto1,Zhang Yiding1,Kurihara Yusuke12,Nengaki Nobuki12,Tashima Hideaki1,Fujinaga Masayuki1,Zhang Ming-Rong1

Affiliation:

1. Department of Advanced Nuclear Medicine Sciences, Institute for Quantum Medical Science, National Institutes for Quantum Science and Technology , Chiba 263-8555 , Japan

2. SHI Accelerator Service Co. Ltd. , Tokyo 141-0031 , Japan

Abstract

Abstract Intracellular pH is a valuable index for predicting neuronal damage and injury. However, no PET probe is currently available for monitoring intracellular pH in vivo. In this study, we developed a new approach for visualizing the hydrolysis rate of monoacylglycerol lipase, which is widely distributed in neurons and astrocytes throughout the brain. This approach uses PET with the new radioprobe [11C]QST-0837 (1,1,1,3,3,3-hexafluoropropan-2-yl-3-(1-phenyl-1H-pyrazol-3-yl)azetidine-1-[11C]carboxylate), a covalent inhibitor containing an azetidine carbamate skeleton for monoacylglycerol lipase. The uptake and residence of this new radioprobe depends on the intracellular pH gradient, and we evaluated this with in silico, in vitro and in vivo assessments. Molecular dynamics simulations predicted that because the azetidine carbamate moiety is close to that of water molecules, the compound containing azetidine carbamate would be more easily hydrolyzed following binding to monoacylglycerol lipase than would its analogue containing a piperidine carbamate skeleton. Interestingly, it was difficult for monoacylglycerol lipase to hydrolyze the azetidine carbamate compound under weakly acidic (pH 6) conditions because of a change in the interactions with water molecules on the carbamate moiety of their complex. Subsequently, an in vitro assessment using rat brain homogenate to confirm the molecular dynamics simulation-predicted behaviour of the azetidine carbamate compound showed that [11C]QST-0837 reacted with monoacylglycerol lipase to yield an [11C]complex, which was hydrolyzed to liberate 11CO2 as a final product. Additionally, the 11CO2 liberation rate was slower at lower pH. Finally, to indicate the feasibility of estimating how the hydrolysis rate depends on intracellular pH in vivo, we performed a PET study with [11C]QST-0837 using ischaemic rats. In our proposed in vivo compartment model, the clearance rate of radioactivity from the brain reflected the rate of [11C]QST-0837 hydrolysis (clearance through the production of 11CO2) in the brain, which was lower in a remarkably hypoxic area than in the contralateral region. In conclusion, we indicated the potential for visualization of the intracellular pH gradient in the brain using PET imaging, although some limitations remain. This approach should permit further elucidation of the pathological mechanisms involved under acidic conditions in multiple CNS disorders.

Funder

National Institutes for Quantum Science and Technology President’s Strategic Grant

Japan Society for the Promotion of Science Kakenhi

Japan Agency for Medical Research and Development Moonshot Research and Development Program

Publisher

Oxford University Press (OUP)

Reference41 articles.

1. Targeting hypoxia-inducible factor (HIF) as a therapeutic strategy for CNS disorders;Freeman;Curr Drug Targets CNS Neurol Disord,2005

2. Tumor pH and its measurement;Zhang;J Nucl Med,2010

3. Age-related hypoxia in CNS pathology;Bădescu;Rom J Morphol Embryol,2016

4. Hypoxic conditioning and the central nervous system: A new therapeutic opportunity for brain and spinal cord injuries?;Baillieul;Exp Biol Med (Maywood),2017

5. Lactate and the injured brain: Friend or foe?;Bouzat;Curr Opin Crit Care,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3