Systemic inflammation associates with and precedes cord atrophy in progressive multiple sclerosis

Author:

Stuart Charlotte M1,Varatharaj Aravinthan12,Zou Yukai13,Darekar Angela3,Domjan Janine2,Gandini Wheeler-Kingshott Claudia A M4ORCID,Perry V Hugh5,Galea Ian12ORCID

Affiliation:

1. Clinical Neurosciences, Clinical and Experimental Sciences, Faculty of Medicine, University of Southampton , Southampton SO16 6YD , UK

2. Wessex Neurological Centre, University Hospital Southampton NHS Foundation Trust , Southampton SO16 6YD , UK

3. Department of Medical Physics, University Hospital Southampton NHS Foundation Trust , Southampton SO16 6YD , UK

4. Department of Neuroinflammation, Faculty of Brain Sciences, NMR Research Unit, Queen Square Multiple Sclerosis Centre, UCL Queen Square Institute of Neurology, University College London , London WC1B 5EH , UK

5. School of Biological Sciences, University of Southampton , Southampton SO16 6YD , UK

Abstract

Abstract In preclinical models of multiple sclerosis, systemic inflammation has an impact on the compartmentalized inflammatory process within the central nervous system and results in axonal loss. It remains to be shown whether this is the case in humans, specifically whether systemic inflammation contributes to spinal cord or brain atrophy in multiple sclerosis. Hence, an observational longitudinal study was conducted to delineate the relationship between systemic inflammation and atrophy using magnetic resonance imaging: the SIMS (Systemic Inflammation in Multiple Sclerosis) study. Systemic inflammation and progression were assessed in people with progressive multiple sclerosis (n = 50) over two and a half years. Eligibility criteria included: (i) primary or secondary progressive multiple sclerosis; (ii) age ≤ 70; and (iii) Expanded Disability Status Scale ≤ 6.5. First morning urine was collected weekly to quantify systemic inflammation by measuring the urinary neopterin-to-creatinine ratio using a validated ultra-performance liquid chromatography mass spectrometry technique. The urinary neopterin-to-creatinine ratio temporal profile was characterized by short-term responses overlaid on a background level of inflammation, so these two distinct processes were considered as separate variables: background inflammation and inflammatory response. Participants underwent MRI at the start and end of the study, to measure cervical spinal cord and brain atrophy. Brain and cervical cord atrophy occurred on the study, but the most striking change was seen in the cervical spinal cord, in keeping with the corticospinal tract involvement that is typical of progressive disease. Systemic inflammation predicted cervical cord atrophy. An association with brain atrophy was not observed in this cohort. A time lag between systemic inflammation and cord atrophy was evident, suggesting but not proving causation. The association of the inflammatory response with cord atrophy depended on the level of background inflammation, in keeping with experimental data in preclinical models where the effects of a systemic inflammatory challenge on tissue injury depended on prior exposure to inflammation. A higher inflammatory response was associated with accelerated cord atrophy in the presence of background systemic inflammation below the median for the study population. Higher background inflammation, while associated with cervical cord atrophy itself, subdued the association of the inflammatory response with cord atrophy. Findings were robust to sensitivity analyses adjusting for potential confounders and excluding cases with new lesion formation. In conclusion, systemic inflammation associates with, and precedes, multiple sclerosis progression. Further work is needed to prove causation since targeting systemic inflammation may offer novel treatment strategies for slowing neurodegeneration in multiple sclerosis.

Funder

Wessex Medical Research

MS Society

Medical Research Council

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3