The cortical neurophysiological signature of amyotrophic lateral sclerosis

Author:

Trubshaw Michael12ORCID,Gohil Chetan13,Yoganathan Katie12,Kohl Oliver13ORCID,Edmond Evan12,Proudfoot Malcolm2,Thompson Alexander G2ORCID,Talbot Kevin2ORCID,Stagg Charlotte J12,Nobre Anna C13,Woolrich Mark13,Turner Martin R12ORCID

Affiliation:

1. Oxford Centre for Human Brain Activity, Wellcome Centre for Integrative Neuroimaging, University of Oxford , Oxford, OX3 7JX , UK

2. Nuffield Department of Clinical Neurosciences, University of Oxford , Oxford, OX3 9DU , UK

3. Department of Psychiatry, University of Oxford , Oxford, OX3 7JX , UK

Abstract

Abstract The progressive loss of motor function characteristic of amyotrophic lateral sclerosis is associated with widespread cortical pathology extending beyond primary motor regions. Increasing muscle weakness reflects a dynamic, variably compensated brain network disorder. In the quest for biomarkers to accelerate therapeutic assessment, the high temporal resolution of magnetoencephalography is uniquely able to non-invasively capture micro-magnetic fields generated by neuronal activity across the entire cortex simultaneously. This study examined task-free magnetoencephalography to characterize the cortical oscillatory signature of amyotrophic lateral sclerosis for having potential as a pharmacodynamic biomarker. Eight to ten minutes of magnetoencephalography in the task-free, eyes-open state was recorded in amyotrophic lateral sclerosis (n = 36) and healthy age-matched controls (n = 51), followed by a structural MRI scan for co-registration. Extracted magnetoencephalography metrics from the delta, theta, alpha, beta, low-gamma, high-gamma frequency bands included oscillatory power (regional activity), 1/f exponent (complexity) and amplitude envelope correlation (connectivity). Groups were compared using a permutation-based general linear model with correction for multiple comparisons and confounders. To test whether the extracted metrics could predict disease severity, a random forest regression model was trained and evaluated using nested leave-one-out cross-validation. Amyotrophic lateral sclerosis was characterized by reduced sensorimotor beta band and increased high-gamma band power. Within the premotor cortex, increased disability was associated with a reduced 1/f exponent. Increased disability was more widely associated with increased global connectivity in the delta, theta and high-gamma bands. Intra-hemispherically, increased disability scores were particularly associated with increases in temporal connectivity and inter-hemispherically with increases in frontal and occipital connectivity. The random forest model achieved a coefficient of determination (R2) of 0.24. The combined reduction in cortical sensorimotor beta and rise in gamma power is compatible with the established hypothesis of loss of inhibitory, GABAergic interneuronal circuits in pathogenesis. A lower 1/f exponent potentially reflects a more excitable cortex and a pathology unique to amyotrophic lateral sclerosis when considered with the findings published in other neurodegenerative disorders. Power and complexity changes corroborate with the results from paired-pulse transcranial magnetic stimulation. Increased magnetoencephalography connectivity in worsening disability is thought to represent compensatory responses to a failing motor system. Restoration of cortical beta and gamma band power has significant potential to be tested in an experimental medicine setting. Magnetoencephalography-based measures have potential as sensitive outcome measures of therapeutic benefit in drug trials and may have a wider diagnostic value with further study, including as predictive markers in asymptomatic carriers of disease-causing genetic variants.

Funder

Motor Neurone Disease Association

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3