Plasticity in the developing brain: neurophysiological basis for lesion-induced motor reorganization

Author:

Batschelett Mitchell12,Gibbs Savannah1,Holder Christen M.13,Holcombe Billy13,Wheless James W.13ORCID,Narayana Shalini134ORCID

Affiliation:

1. Neuroscience Institute, Le Bonheur Children’s Hospital, Memphis, TN, USA

2. Rhodes College, Memphis, TN, USA

3. Department of Pediatrics, Division of Pediatric Neurology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA

4. Department of Anatomy and Neurobiology, College of Medicine, University of Tennessee Health Science Center, Memphis, TN, USA

Abstract

Abstract The plasticity of the developing brain can be observed following injury to the motor cortex and/or corticospinal tracts, the most commonly injured brain area in the pre- or peri-natal period. Factors such as the timing of injury, lesion size and lesion location may affect a single hemisphere’s ability to acquire bilateral motor representation. Bilateral motor representation of single hemisphere origin is most likely to occur if brain injury occurs before the age of 2 years; however, the link between injury aetiology, reorganization type and functional outcome is largely understudied. We performed a retrospective review to examine reorganized cortical motor maps identified through transcranial magnetic stimulation in a cohort of 52 patients. Subsequent clinical, anthropometric and demographic information was recorded for each patient. Each patient’s primary hand motor cortex centre of gravity, along with the Euclidian distance between reorganized and normally located motor cortices, was also calculated. The patients were classified into broad groups including reorganization type (inter- and intrahemispheric motor reorganization), age at the time of injury (before 2 years and after 2 years) and injury aetiology (developmental disorders and acquired injuries). All measures were analysed to find commonalities between motor reorganization type and injury aetiology, function and centre of gravity distance. There was a significant effect of injury aetiology on type of motor reorganization (P < 0.01), with 60.7% of patients with acquired injuries and 15.8% of patients with developmental disorders demonstrating interhemispheric motor reorganization. Within the interhemispheric motor reorganization group, ipsilaterally and contralaterally projecting hand motor cortex centres of gravity overlapped, indicating shared cortical motor representation. Furthermore, the data suggest significantly higher prevalence of bilateral motor representation from a single hemisphere in cases of acquired injuries compared to those of developmental origin. Functional outcome was found to be negatively affected by acquired injuries and interhemispheric motor reorganization relative to their respective counterparts with developmental lesions and intrahemispheric motor reorganization. These results provide novel information regarding motor reorganization in the developing brain via an unprecedented cohort sample size and transcranial magnetic stimulation. Transcranial magnetic stimulation is uniquely suited for use in understanding the principles of motor reorganization, thereby aiding in the development of more efficacious therapeutic techniques to improve functional recovery following motor cortex injury.

Funder

Rhodes College

Le Bonheur Neuroscience Institute Scholars Program

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3