A candidate neuroimaging biomarker for detection of neurotransmission-related functional alterations and prediction of pharmacological analgesic response in chronic pain

Author:

Martins Daniel1,Veronese Mattia1,Turkheimer Federico E.1ORCID,Howard Matthew A.1,Williams Steve C. R.1,Dipasquale Ottavia1ORCID

Affiliation:

1. Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King’s College London, De Crespigny Park, London SE5 8AF, UK

Abstract

Abstract Chronic pain is a world-wide clinical challenge. Response to analgesic treatment is limited and difficult to predict. Functional MRI has been suggested as a potential solution. However, while most analgesics target specific neurotransmission pathways, functional MRI-based biomarkers are not specific for any neurotransmitter system, limiting our understanding of how they might contribute to predict treatment response. Here, we sought to bridge this gap by applying Receptor-Enriched Analysis of Functional Connectivity by Targets to investigate whether neurotransmission-enriched functional connectivity mapping can provide insights into the brain mechanisms underlying chronic pain and inter-individual differences in analgesic response after a placebo or duloxetine. We performed secondary analyses of two openly available resting-state functional MRI data sets of 56 patients with chronic knee osteoarthritis pain who underwent pre-treatment brain scans in two clinical trials. Study 1 (n = 17) was a 2-week single-blinded placebo pill trial. Study 2 (n = 39) was a 3-month double-blinded randomized trial comparing placebo to duloxetine, a dual serotonin–noradrenaline reuptake inhibitor. Across two independent studies, we found that patients with chronic pain present alterations in the functional circuit related to the serotonin transporter, when compared with age-matched healthy controls. Placebo responders in Study 1 presented with higher pre-treatment functional connectivity enriched by the dopamine transporter compared to non-responders. Duloxetine responders presented with higher pre-treatment functional connectivity enriched by the serotonin and noradrenaline transporters when compared with non-responders. Neurotransmission-enriched functional connectivity mapping might hold promise as a new mechanistic-informed biomarker for functional brain alterations and prediction of response to pharmacological analgesia in chronic pain.

Funder

National Institute for Health Research

Maudsley Biomedical Research Centre

South London and Maudsley NHS Foundation Trust

King’s College London

Medical Research Council Experimental Medicine Challenge

Department of Health and Social Care

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3