Predicting conversion from mild cognitive impairment to Alzheimer’s disease: a multimodal approach

Author:

Agostinho Daniel123ORCID,Simões Marco123ORCID,Castelo-Branco Miguel13ORCID

Affiliation:

1. Coimbra Institute for Biomedical Imaging and Translational Research (CIBIT), ICNAS, Faculty of Medicine, University of Coimbra , 3000-548 Coimbra , Portugal

2. Faculty of Science and Technology, Centre for Informatics and Systems of the University of Coimbra (CISUC) , 3030-790 Coimbra , Portugal

3. Intelligent Systems Associate Laboratory (LASI) , 4800-058 Guimarães , Portugal

Abstract

Abstract Successively predicting whether mild cognitive impairment patients will progress to Alzheimer’s disease is of significant clinical relevance. This ability may provide information that can be leveraged by emerging intervention approaches and thus mitigate some of the negative effects of the disease. Neuroimaging biomarkers have gained some attention in recent years and may be useful in predicting the conversion of mild cognitive impairment to Alzheimer’s disease. We implemented a novel multi-modal approach that allowed us to evaluate the potential of different imaging modalities, both alone and in different degrees of combinations, in predicting the conversion to Alzheimer’s disease of mild cognitive impairment patients. We applied this approach to the imaging data from the Alzheimer’s Disease Neuroimaging Initiative that is a multi-modal imaging dataset comprised of MRI, Fluorodeoxyglucose PET, Florbetapir PET and diffusion tensor imaging. We included a total of 480 mild cognitive impairment patients that were split into two groups: converted and stable. Imaging data were segmented into atlas-based regions of interest, from which relevant features were extracted for the different imaging modalities and used to construct machine-learning models to classify mild cognitive impairment patients into converted or stable, using each of the different imaging modalities independently. The models were then combined, using a simple weight fusion ensemble strategy, to evaluate the complementarity of different imaging modalities and their contribution to the prediction accuracy of the models. The single-modality findings revealed that the model, utilizing features extracted from Florbetapir PET, demonstrated the highest performance with a balanced accuracy of 83.51%. Concerning multi-modality models, not all combinations enhanced mild cognitive impairment conversion prediction. Notably, the combination of MRI with Fluorodeoxyglucose PET emerged as the most promising, exhibiting an overall improvement in predictive capabilities, achieving a balanced accuracy of 78.43%. This indicates synergy and complementarity between the two imaging modalities in predicting mild cognitive impairment conversion. These findings suggest that β-amyloid accumulation provides robust predictive capabilities, while the combination of multiple imaging modalities has the potential to surpass certain single-modality approaches. Exploring modality-specific biomarkers, we identified the brainstem as a sensitive biomarker for both MRI and Fluorodeoxyglucose PET modalities, implicating its involvement in early Alzheimer’s pathology. Notably, the corpus callosum and adjacent cortical regions emerged as potential biomarkers, warranting further study into their role in the early stages of Alzheimer’s disease.

Funder

Fundação para a Ciência e a Tecnologia

Publisher

Oxford University Press (OUP)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3