Abnormalities in cortical pattern of coherence in migraine detected using ultra high-density EEG

Author:

Chamanzar Alireza12ORCID,Haigh Sarah M345ORCID,Grover Pulkit12,Behrmann Marlene25

Affiliation:

1. Department of Electrical and Computer Engineering, Carnegie Mellon University, Pittsburgh, PA, USA

2. Neuroscience Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA

3. Department of Psychology, University of Nevada, Reno, NV 89557, USA

4. Institute for Neuroscience, University of Nevada, Reno, NV 89557, USA

5. Department of Psychology, Carnegie Mellon University, Pittsburgh, PA, USA

Abstract

Abstract Individuals with migraine generally experience photophobia and/or phonophobia during and between migraine attacks. Many different mechanisms have been postulated to explain these migraine phenomena including abnormal patterns of connectivity across the cortex. The results, however, remain contradictory and there is no clear consensus on the nature of the cortical abnormalities in migraine. Here, we uncover alterations in cortical patterns of coherence (connectivity) in interictal migraineurs during the presentation of visual and auditory stimuli and during rest. We used a high-density EEG system, with 128 customized electrode locations, to compare inter- and intra-hemispheric coherence in the interictal period from 17 individuals with migraine (12 female) and 18 age- and gender-matched healthy control subjects. During presentations of visual (vertical grating pattern) and auditory (modulated tone) stimulation which varied in temporal frequency (4 and 6 Hz), and during rest, participants performed a colour detection task at fixation. Analyses included characterizing the inter- and intra-hemisphere coherence between the scalp EEG channels over 2-s time intervals and over different frequency bands at different spatial distances and spatial clusters. Pearson’s correlation coefficients were estimated at zero-lag. Repeated measures analyses-of-variance revealed that, relative to controls, migraineurs exhibited significantly (i) faster colour detection performance, (ii) lower spatial coherence of alpha-band activity, for both inter- and intra-hemisphere connections, and (iii) the reduced coherence occurred predominantly in frontal clusters during both sensory conditions, regardless of the stimulation frequency, as well as during the resting-state. The abnormal patterns of EEG coherence in interictal migraineurs during visual and auditory stimuli, as well as at rest (eyes open), may be associated with the cortical hyper-responsivity that is characteristic of abnormal sensory processing in migraineurs.

Funder

Carnegie Mellon University BrainHUB

Chuck Noll Foundation for Brain Injury Research

Brain & Behavior Research Foundation

National Institute of Mental Health (NIMH) Academic Research Enhancement Awards (AREA) R15s

National Science Foundation (NSF) Established Program to Stimulate Competitive Research

Publisher

Oxford University Press (OUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3