Suppression of the Sugarcane Aphid, Melanaphis sacchari (Hemiptera: Aphididae), by Resident Natural Enemies on Susceptible and Resistant Sorghum Hybrids

Author:

Faris Ashleigh M12ORCID,Elliott Norman C3,Brewer Michael J12ORCID

Affiliation:

1. Department of Entomology, Texas A&M University, TAMU 2475, College Station, TX, USA

2. Department of Entomology, Texas A&M AgriLife Research & Extension Center, 10345 State Highway 44, Corpus Christi, TX, USA

3. United States Department of Agriculture – Agricultural Research Services, 1301 North Western Road, Stillwater, OK, USA

Abstract

Abstract The sugarcane aphid, Melanaphis sacchari (Zehntner) (Hemiptera: Aphididae), is an invasive sorghum pest that has threatened over 90% of North American sorghum production. Resident parasitoids, coccinellids, syrphids, and lacewings prey on this aphid. Our objective was to compare and estimate parasitoid and predator suppression of sugarcane aphids placed on resistant and susceptible hybrids in a field setting using natural enemy exclusion cages. During 2018 and 2019 along the Texas Gulf Coast and Central Oklahoma, three natural enemy exclusion treatments—no exclusion (full access for parasitoids and predators), partial exclusion (access limited to parasitoids), and complete exclusion (excludes parasitoids and predators)—were used. The parasitoid Aphelinus nigritus Howard (Hymenoptera: Aphelinidae) accounted for 90% of recovered natural enemies. In 2018, aphid suppression attributable to A. nigritus was ca. 95% on the resistant hybrids and 80% on the susceptible hybrids when comparing aphid counts from complete and partial exclusion treatments, while few predators were observed. In 2019, aphid suppression was attributed to a combination of predation and parasitism. Relatively more predators were recorded at both sites, accounting for 14% to 33% of specimens recovered in the no exclusion treatment. Aphid suppression attributed to predators and parasitoids ranged from 85% on aphid-resistant hybrids and 27% on susceptible hybrids in south Texas and >95% on both hybrids in Oklahoma when comparing aphid abundance in the complete and no exclusion treatments. Parasitism and predation contributed to aphid regulation on both hybrids, which may accrue multiple benefits leading to a more resilient sugarcane aphid management system.

Funder

USDA Agricultural Research Service

Publisher

Oxford University Press (OUP)

Subject

Insect Science,Ecology,Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3