Are Large Cardinal Axioms Restrictive?

Author:

Barton Neil1ORCID

Affiliation:

1. IFIKK, Universitetet i Oslo , Blindern, 0315 Oslo, Norway

Abstract

AbstractThe independence phenomenon in set theory, while pervasive, can be partially addressed through the use of large cardinal axioms. A commonly assumed idea is that large cardinal axioms are species of maximality principles. In this paper I question this claim. I show that there is a kind of maximality (namely absoluteness) on which large cardinal axioms come out as restrictive relative to a formal notion of restrictiveness. Within this framework, I argue that large cardinal axioms can still play many of their usual foundational roles.

Publisher

Oxford University Press (OUP)

Subject

Philosophy,General Mathematics

Reference62 articles.

1. ‘Universism and extensions of V’;Antos;The Review of Symbolic Logic,2021

2. ‘Multiverse conceptions in set theory’;Antos;Synthese,2015

3. ‘The hyperuniverse program’;Arrigoni;Bulletin of Symbolic Logic,2013

4. ‘A characterization of Martin’s axiom in terms of absoluteness’;Bagaria;The Journal of Symbolic Logic,1997

5. ‘Bounded forcing axioms as principles of generic absoluteness’;Bagaria;Archive for Mathematical Logic,2000

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3