Bi-hierarchical porous Pt microspheres grown on Ti wire with TiO2 nanotubes layer for selective alcohol sensing

Author:

Fedorov Fedor S1,Goldt Anastasia E1,Zamansky Konstantin1,Vasilkov Mikhail Yu23,Gaev Andrey4,Lantsberg Anna V4,Zaytsev Valeriy1,Aslyamov Timur1,Nasibulin Albert G15

Affiliation:

1. Skolkovo Institute of Science and Technology , 3 Nobel str., 121205 Moscow, Russia

2. Yuri Gagarin State Technical University of Saratov , 77 Polytechnicheskaya str., 410054 Saratov, Russia

3. Saratov Branch of Kotelnikov Institute of Radioengineering and Electronics of RAS , 38 Zelenaya str., 410019 Saratov, Russia

4. Bauman Moscow State Technical University , Baumanskaya 2-ya str, 5/1, Moscow, 105005 Moscow, Russia

5. Aalto University , Kemistintie 1, PO Box 16100, 00076 Aalto, Finland

Abstract

ABSTRACT This study focuses on the synthesis of bi-hierarchical porous Pt microspheres directly on titania nanotube arrays grown on a Ti wire for their application as a one-electrode selective alcohol sensor. We evaluate the synthesis conditions, morphology, structure of the obtained material using scanning, transmission electron microscopy and electron diffraction. The sensor performance is assessed in a one-electrode configuration, using thermocycling protocols both to heat and acquire a signal that we further process with a machine learning algorithm for selective determination of alcohols. We found that reduction of Pt precursor by formic acid facilitates the appearance of quasi-1D Pt structures without using any surfactant. High excess of formic acid yields the formation of quasi-dendritic Pt structures with the overall morphology of a sphere and channels whose diameter remains one of the TiO2 nanotubes. Our data suggest the growth of Pt spheres to be diffusion controlled with constant or decreasing nucleation rate that should include assembling of Pt nanorods. The fabricated sensors based on the synthesized structures show a chemiresistive response to methanol, ethanol and isopropanol vapors in the mixture with air, which we selectively determine using only one sensor.

Publisher

Oxford University Press (OUP)

Reference61 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3