Recent geomagnetic variations and the force balance in Earth’s core

Author:

Aubert Julien1ORCID

Affiliation:

1. Université de Paris, Institut de physique du globe de Paris, CNRS, F-75005 Paris, France

Abstract

SUMMARY The nature of the force balance that governs the geodynamo is debated. Recent theoretical analyses and numerical simulations support a quasigeotrophic (QG), magneto-Archimedes-Coriolis (MAC) balance in Earth’s core, where the Coriolis and pressure forces equilibrate at leading order in amplitude, and where the buoyancy, Lorentz and ageostrophic Coriolis forces equilibrate at the next order. In contrast, earlier theoretical expectations have favoured a magnetostrophic regime where the Lorentz force would reach leading order at the system scale. The dominant driver (buoyant or magnetic) for the general circulation in Earth’s core is equally debated. In this study, these questions are explored in the light of the high-quality geomagnetic data recently acquired by satellites and at magnetic ground observatories. The analysis involves inverse geodynamo modelling, a method that uses multivariate statistics extracted from a numerical geodynamo model to infer the state of Earth’s core from a geomagnetic field model interpretation of the main field and secular variation data. To test the QG-MAC dynamic hypothesis against the data, the framework is extended in order to explicitly prescribe this force balance into the inverse problem solved at the core surface. The resulting inverse solutions achieve a quantitatively adequate fit to the data while ensuring deviations from the QG-MAC balance (which amount to an inertial driving of the flow) lower than each of the leading forces. The general circulation imaged within the core over the past two decades confirms the existence of a planetary-scale, eccentric, axially columnar gyre that comprises an intense, equatorially symmetric jet at high latitudes in the Pacific hemisphere. The dominant driver of this circulation is shown to be of buoyant nature, through a thermal wind balance with a longitudinally hemispheric buoyancy anomaly distribution. Geomagnetic forecasts initiated with the inverted core states are systematically more accurate against the true interannual geomagnetic field evolution when enforcing the QG-MAC constraint. This force balance is therefore consistent with the geomagnetic data at the large scales of Earth’s core that can be imaged by the method.

Funder

Fondation Simone et Cino Del Duca

Institut de France

European Space Agency

Grand Équipement National De Calcul Intensif

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3