Full-waveform-based characterization of acoustic emission activity in a mine-scale experiment: a comparison of conventional and advanced hydraulic fracturing schemes

Author:

Niemz Peter12ORCID,Cesca Simone1,Heimann Sebastian1,Grigoli Francesco3ORCID,von Specht Sebastian14,Hammer Conny3,Zang Arno12,Dahm Torsten12

Affiliation:

1. GFZ German Research Centre for Geosciences, Potsdam, Germany

2. Institute of Geosciences, University of Potsdam, Potsdam, Germany

3. Swiss Seismological Service, ETH-Zurich, Zurich, Switzerland

4. Earthquake-Disaster & Risk Evaluation and Management (E-DREaM) Center, National Central University, Taiwan

Abstract

SUMMARY Understanding fracturing processes and the hydromechanical relation to induced seismicity is a key question for enhanced geothermal systems (EGS). Commonly massive fluid injection, predominately causing hydroshearing, are used in large-scale EGS but also hydraulic fracturing approaches were discussed. To evaluate the applicability of hydraulic fracturing techniques in EGS, six in situ, multistage hydraulic fracturing experiments with three different injection schemes were performed under controlled conditions in crystalline rock at the Äspö Hard Rock Laboratory (Sweden). During the experiments the near-field ground motion was continuously recorded by 11 piezoelectric borehole sensors with a sampling rate of 1 MHz. The sensor network covered a volume of 30×30×30 m around a horizontal, 28-m-long injection borehole at a depth of 410 m. To extract and characterize massive, induced, high-frequency acoustic emission (AE) activity from continuous recordings, a semi-automated workflow was developed relying on full waveform based detection, classification and location procedures. The approach extended the AE catalogue from 196 triggered events in previous studies to more than 19 600 located AEs. The enhanced catalogue, for the first time, allows a detailed analysis of induced seismicity during single hydraulic fracturing experiments, including the individual fracturing stages and the comparison between injection schemes. Beside the detailed study of the spatio-temporal patterns, event clusters and the growth of seismic clouds, we estimate relative magnitudes and b-values of AEs for conventional, cyclic progressive and dynamic pulse injection schemes, the latter two being fatigue hydraulic fracturing techniques. While the conventional fracturing leads to AE patterns clustered in planar regions, indicating the generation of a single main fracture plane, the cyclic progressive injection scheme results in a more diffuse, cloud-like AE distribution, indicating the activation of a more complex fracture network. For a given amount of hydraulic energy (pressure multiplied by injected volume) pumped into the system, the cyclic progressive scheme is characterized by a lower rate of seismicity, lower maximum magnitudes and significantly larger b-values, implying an increased number of small events relative to the large ones. To our knowledge, this is the first direct comparison of high resolution seismicity in a mine-scale experiment induced by different hydraulic fracturing schemes.

Funder

Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Karlsruher Institut für Technologie

Svensk Kärnbränslehantering

Bundesministerium für Bildung und Forschung

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3