Robust well-log based determination of rock thermal conductivity through machine learning

Author:

Meshalkin Yury1,Shakirov Anuar1,Popov Evgeniy1,Koroteev Dmitry1,Gurbatova Irina2

Affiliation:

1. Skolkovo Institute of Science and Technology, Bol'shoy Bul'var, 30, Moscow, Moscow Oblast 143026, Russia

2. PermNIPIneft, LLC Lukoil-Engineering, Sovetskoy Armii, 29, Perm, Permskaya Oblast 614066, Russia

Abstract

SUMMARY Rock thermal conductivity is an essential input parameter for enhanced oil recovery methods design and optimization and for basin and petroleum system modelling. Absence of any effective technique for direct in situ measurements of rock thermal conductivity makes the development of well-log based methods for rock thermal conductivity determination highly desirable. A major part of the existing problem solutions is regression model-based approaches. Literature review revealed that there are only several studies performed to assess the applicability of neural network-based algorithms to predict rock thermal conductivity from well-logging data. In this research, we aim to define the most effective machine-learning algorithms for well-log based determination of rock thermal conductivity. Well-logging data acquired at a heavy oil reservoir together with results of thermal logging on cores extracted from two wells were the basis for our research. Eight different regression models were developed and tested to predict vertical variations of rock conductivity from well-logging data. Additionally, rock thermal conductivity was determined based on Lichtenecker–Asaad model. Comparison study of regression-based and theoretical-based approaches was performed. Among considered machine learning techniques Random Forest algorithm was found to be the most accurate at well-log based determination of rock thermal conductivity. From a comparison of the thermal conductivity—depth profile predicted from well-logging data with the experimental data, and it can be concluded that thermal conductivity can be determined with a total relative error of 12.54 per cent. The obtained results prove that rock thermal conductivity can be inferred from well-logging data for wells that are drilled in a similar geological setting based on the Random Forest algorithm with an accuracy sufficient for industrial needs.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference32 articles.

1. Study of the thermal conductivity of fluid-bearing porous rock;Asaad,1955

2. A new powerful tool for interpreting and predicting in reservoir geophysics: theoretical modeling as applied to laboratory measurements of thermal properties;Bayuk,2011

3. Analysis of heat flow data—in situ thermal conductivity measurements;Beck;Can. J. Earth Sci.,1971

4. Random forests;Breiman;Mach. Learn.,2001

Cited by 23 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3