Persistent westward drift of the geomagnetic field at the core–mantle boundary linked to recurrent high-latitude weak/reverse flux patches

Author:

Nilsson Andreas1,Suttie Neil1,Korte Monika2ORCID,Holme Richard3,Hill Mimi3

Affiliation:

1. Department of Geology, Lund University, Sölvegatan 12, 22362 Lund, Sweden

2. GFZ German Research Centre for Geosciences, Telegrafenberg, 14473 Potsdam, Germany

3. Department of Earth, Ocean and Ecological Sciences, University of Liverpool, Oliver Lodge Laboratories, Oxford Street, Liverpool L69 7ZE, UK

Abstract

SUMMARY Observations of changes in the geomagnetic field provide unique information about processes in the outer core where the field is generated. Recent geomagnetic field reconstructions based on palaeomagnetic data show persistent westward drift at high northern latitudes at the core–mantle boundary (CMB) over the past 4000 yr, as well as intermittent occurrence of high-latitude weak or reverse flux patches. To further investigate these features, we analysed time-longitude plots of a processed version of the geomagnetic field model pfm9k.1a, filtered to remove quasi-stationary features of the field. Our results suggest that westward drift at both high northern and southern latitudes of the CMB have been a persistent feature of the field over the past 9000 yr. In the Northern Hemisphere we detect two distinct signals with drift rates of 0.09° and 0.25° yr−1 and dominant zonal wavenumbers of m = 2 and 1, respectively. Comparisons with other geomagnetic field models support these observations but also highlight the importance of sedimentary data that provide crucial information on high-latitude geomagnetic field variations. The two distinct drift signals detected in the Northern Hemisphere can largely be decomposed into two westward propagating waveforms. We show that constructive interference between these two waveforms accurately predicts both the location and timing of previously observed high-latitude weak/reverse flux patches over the past 3–4 millennia. In addition, we also show that the 1125-yr periodicity signal inferred from the waveform interference correlates positively with variations in the dipole tilt over the same time period. The two identified drift signals may partially be explained by the westward motion of high-latitude convection rolls. However, the dispersion relation might also imply that part of the drift signal could be caused by magnetic Rossby waves riding on the mean background flow.

Funder

Natural Environment Research Council, UK

Swedish Research Council

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3