Multivariable inversion using exhaustive grid search and high-performance GPU processing: a new perspective

Author:

Venetis Ioannis E1ORCID,Saltogianni Vasso23,Stiros Stathis3,Gallopoulos Efstratios1

Affiliation:

1. University of Patras, 26504 Rio Achaia, Department of Computer Engineering & Informatics, Greece

2. Helmholtz-Centre Potsdam, GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany

3. University of Patras, 26504 Rio Achaia, Department of Civil Engineering, Greece

Abstract

SUMMARY Exhaustive searches in regular grids is a traditional and effective method for inversion, that is numerical solution of systems of non-linear equations which cannot be solved using formal algebraic techniques. However, this technique is effective for very few (3–4) variables and is slow. Recently, the first limitation was to a major degree overpassed with the new TOPological INVersion (TOPINV) algorithm which was used for inversion of systems with up to 18, or even more unknown variables. The novelty of this algorithm is that it is not based on the principle of the mean minimum misfit (cost function) between observations and model predictions, used by most inversion techniques. The new algorithm investigates for each gridpoint whether misfits of each observation are within specified uncertainty intervals, and stores clusters of ‘successful’ gridpoints in matrix form. These clusters (ensembles, sets) of gridpoints are tested whether they satisfy certain criteria and are then used to compute one or more optimal statistical solutions. The new algorithm is efficient for highly non-linear problems with high measurement uncertainties (low signal-to-noise ratio, SNR) and poor distribution of observations, that is problems leading to complicated 3-D mean misfit surfaces without dominant peaks, but it is slow when running in common computers. To overcome this limitation, we used GPUs which permit parallel processing in common computers, but faced another computational problem: GPU parallel processing supports only up to three dimensions. To solve this problem, we used CUDA programming and optimized the distribution of the computational load to all GPU cores. This leads up to 100x speedup relative to common CPU processing, as is derived from comparative tests with synthetic data for two typical inversion geophysical problems with up to 18 unknown variables, Mogi magma source modeling and elastic dislocation modeling of seismic faults. This impressive speedup makes the GPU/CUDA implementation of TOPINV practical even for low-latency solution of certain geophysical problems. This speedup in calculations also permitted to investigate the performance of the new algorithm in relation to the density of the adopted grids. We focused on a typical problem of elastic dislocation in unfavorable conditions (poor observations geometry, data with low SNR) and on synthetic observations with noise, so that the difference of each solution from the ‘true’/reference value was known (accuracy-based approach). Application of the algorithm revealed stable, accurate and precise solutions, with quality increasing with the grid density. Solution defects (bias), mainly produced by very coarse grids, can be identified through specific diagnostic criteria, dictating finer search grids.

Funder

University of Patras

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference47 articles.

1. SAR data analysis in solid earth geophysics: from science to risk management;Atzori,2014

2. The surface rupture and slip distribution of the 17 August 1999 Izmit earthquake (M 7.4), North Anatolian Fault;Barka;Bull. seism. Soc. Am.,2002

3. Modeling crustal deformation near active faults and volcanic centers: a catalog of deformation models;Battaglia,2013

4. Uncertainties in finite-fault slip inversions: to what extent to believe? (A critical review);Beresnev;Bull. seism. Soc. Am.,2003

5. Hypocentre location: genetic algorithms incorporating problem-specific information;Billings;Geophys. J. Int.,1994

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3