Fast dictionary learning for noise attenuation of multidimensional seismic data

Author:

Chen Yangkang1

Affiliation:

1. National Center for Computational Sciences, Oak Ridge National Laboratory, One Bethel Valley Road, Oak Ridge, TN 37831-6008, USA

Abstract

SUMMARY The K-SVD algorithm has been successfully utilized for adaptively learning the sparse dictionary in 2-D seismic denoising. Because of the high computational cost of many singular value decompositions (SVDs) in the K-SVD algorithm, it is not applicable in practical situations, especially in 3-D or 5-D problems. In this paper, I extend the dictionary learning based denoising approach from 2-D to 3-D. To address the computational efficiency problem in K-SVD, I propose a fast dictionary learning approach based on the sequential generalized K-means (SGK) algorithm for denoising multidimensional seismic data. The SGK algorithm updates each dictionary atom by taking an arithmetic average of several training signals instead of calculating an SVD as used in K-SVD algorithm. I summarize the sparse dictionary learning algorithm using K-SVD, and introduce SGK algorithm together with its detailed mathematical implications. 3-D synthetic, 2-D and 3-D field data examples are used to demonstrate the performance of both K-SVD and SGK algorithms. It has been shown that SGK algorithm can significantly increase the computational efficiency while only slightly degrading the denoising performance.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 30 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3