Relative earthquake location procedure for clustered seismicity with a single station

Author:

Grigoli Francesco12ORCID,Ellsworth William L2,Zhang Miao3ORCID,Mousavi Mostafa2,Cesca Simone4,Satriano Claudio5,Beroza Gregory C2,Wiemer Stefan1

Affiliation:

1. Swiss Seismological Service (SED), ETH-Zurich, Zurich,CH- 8092, 8092, Switzerland

2. Department of Geohysics, Stanford University, Stanford, CA 94305, USA

3. Department of Earth and Environmental Sciences, Dalhousie University, Halifax, NS B3H 4R2, Canada

4. German Research Centre for Geosciences (GFZ), Potsdam, DE-14473, Germany

5. Institute de Physique du Globe de Paris (IPGP), Université de Paris, Paris, F-75005, France

Abstract

SUMMARY Earthquake location is one of the oldest problems in seismology, yet remains an active research topic. With dense seismic monitoring networks, it is possible to obtain reliable locations for microearthquakes; however, in many cases dense networks are lacking, limiting the location accuracy, or preventing location when there are too few observations. For small events in all settings, recording may be sparse and location may be difficult due to low signal-to-noise ratio. In this work, we introduce a new, distance-geometry-based method to locate seismicity clusters using only one or two seismic stations. A distance geometry problem consists in determining the location of sets of points based only on the distances between member pairs. Applied to seismology, our approach allows earthquake location using the interevent distance between earthquake pairs, which can be estimated using only one or two seismic stations. We first validate the method with synthetic data that resemble common cluster shapes, and then test the method with two seismic sequences in California: the August 2014   Mw 6.0 Napa earthquake and the July 2019 Mw 6.4 Ridgecrest earthquake sequence. We demonstrate that our approach provides robust and reliable results even for a single station. When using two seismic stations, the results capture the same structures recovered with high-resolution double-difference locations based on multiple stations. The proposed method is particularly useful for poorly monitored areas, where only a limited number of stations are available.

Funder

Horizon 2020 Framework Programme

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3