Nonlinear full waveform inversion of wide-aperture OBS data for Moho structure using a trans-dimensional Bayesian method

Author:

Guo Peng1ORCID,Singh Satish C2,Vaddineni Venkata A2,Visser Gerhard1ORCID,Grevemeyer Ingo3ORCID,Saygin Erdinc14

Affiliation:

1. Deep Earth Imaging Future Science Platform, The Commonwealth Scientific and Industrial Research Organisation (CSIRO), Kensington 6151, Australia

2. Laboratoire de Géosciences Marines, Institut de Physique du Globe de Paris, Paris 75005, France

3. GEOMAR Helmholtz Centre for Ocean Research, D-24148 Kiel, Germany

4. Department of Physics, School of Physics, Mathematics and Computing, Faculty of Engineering and Mathematical Sciences, University of Western Australia, Crawley 6009, Australia

Abstract

SUMMARY Seismic full waveform inversion (FWI) is a powerful method for estimating quantitative subsurface physical parameters from seismic data. As the FWI is a nonlinear problem, the linearized approach updates model iteratively from an initial model, which can get trapped in local minima. In the presence of a high-velocity contrast, such as at Moho, the reflection coefficient and recorded waveforms from wide-aperture seismic acquisition are extremely nonlinear around critical angles. The problem at the Moho is further complicated by the interference of lower crustal (Pg) and upper mantle (Pn) turning ray arrivals with the critically reflected Moho arrivals (PmP). In order to determine velocity structure near Moho, a nonlinear method should be used. We propose to solve this strong nonlinear FWI problem at Moho using a trans-dimensional Markov chain Monte Carlo (MCMC) method, where the earth model between lower crust and upper mantle is ideally parametrized with a 1-D assumption using a variable number of velocity interfaces. Different from common MCMC methods that require determining the number of unknown as a fixed prior before inversion, trans-dimensional MCMC allows the flexibility for an automatic estimation of both the model complexity (e.g. the number of velocity interfaces) and the velocity–depth structure from the data. We first test the algorithm on synthetic data using four representative Moho models and then apply to an ocean bottom seismometer (OBS) data from the Mid-Atlantic Ocean. A 2-D finite-difference solution of an acoustic wave equation is used for data simulation at each iteration of MCMC search, for taking into account the lateral heterogeneities in the upper crust, which is constrained from traveltime tomography and is kept unchanged during inversion; the 1-D model parametrization near Moho enables an efficient search of the trans-dimensional model space. Inversion results indicate that, with very little prior and the wide-aperture seismograms, the trans-dimensional FWI method is able to infer the posterior distribution of both the number of velocity interfaces and the velocity–depth model for a strong nonlinear problem, making the inversion a complete data-driven process. The distribution of interface matches the velocity discontinuities. We find that the Moho in the study area is a transition zone of 0.7 km, or a sharp boundary with velocities from around 7 km s−1 in the lower crust to 8 km s−1 of the upper mantle; both provide nearly identical waveform match for the field data. The ambiguity comes from the resolution limit of the band-limited seismic data and limited offset range for PmP arrivals.

Funder

CSIRO

European Research Council

DFG

Australian Government

Government of Western Australia

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference72 articles.

1. Receiver function inversion by trans-dimensional Monte Carlo sampling;Agostinetti;Geophys. J. Int.,2010

2. Lithospheric architecture of the south-western Alps revealed by multiparameter teleseismic full-waveform inversion;Beller;Geophys. J. Int.,2018

3. 2D full-waveform inversion and uncertainty estimation using the reversible jump Hamiltonian Monte Carlo;Biswas,2017

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3