Finite-frequency traveltime tomography using the Generalized Rytov approximation

Author:

Feng B12,Xu W3,Wu R S2,Xie X B2,Wang H1

Affiliation:

1. Wave Phenomena and Intelligent Inversion Imaging group (WPI), School of Ocean and Earth Science, Tongji University, Shanghai 200092, China

2. Modeling and Imaging Laboratory, Earth & Planetary Sciences, University of California, Santa Cruz, CA 95064, USA

3. Department of Mathematics, Tongji University, Shanghai 200092, China

Abstract

SUMMARY Wave-equation-based traveltime tomography has been extensively applied in both global tomography and seismic exploration. Typically, the traveltime Fréchet derivative is obtained using the first-order Born approximation, which is only satisfied for weak velocity perturbations and small phase shifts (i.e. the weak-scattering assumption). Although the small phase-shift restriction can be handled with the Rytov approximation, the weak velocity-perturbation assumption is still a major limitation. The recently developed generalized Rytov approximation (GRA) method can achieve an improved phase accuracy of the forward-scattered wavefield, in the presence of large-scale and strong velocity perturbations. In this paper, we combine GRA with the classical finite-frequency theory and propose a GRA-based traveltime sensitivity kernel (GRA-TSK), which overcomes the weak-scattering limitation of the conventional finite-frequency methods. Numerical examples demonstrate that the accumulated time delay of forward-scattered waves caused by large-scale smooth perturbations can be correctly handled by the GRA-TSK, regardless of the magnitude of the velocity perturbations. Then, we apply the new sensitivity kernel to solve the traveltime inverse problem, and we propose a matrix-free Gauss–Newton method that has a faster convergence rate compared with the gradient-based method. Numerical tests show that, compared with the conventional adjoint traveltime tomography, the proposed GRA-based traveltime tomography can obtain a more accurate model with a faster convergence rate, making it more suited for recovering the large-intermediate scale of the velocity model, even for strong-perturbation and complex subsurface structures.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3