Local Coupling and Conversion of Surface Waves due to Earth’s Rotation. Part 2: Numerical Examples

Author:

Sens-Schönfelder Christoph12,Bozdağ Ebru3,Snieder Roel2

Affiliation:

1. GFZ German Research Centre for Geosciences, 14473 Potsdam, Germany

2. Center for Wave Phenomena, Colorado School of Mines, Golden CO 80401, USA

3. Dept. of Geophysics, Colorado School of Mines, Golden CO 80401, USA

Abstract

Summary Rotation of the Earth affects the propagation of seismic waves. The global coupling of spheroidal and toroidal modes by the Coriolis force over time is described by normal-mode theory. The local action of the Coriolis force on the propagation of surface waves can be described by coefficients for the coupling between propagating Rayleigh and Love waves as derived by (Landau & Lifshitz 1959). Using global wavefield simulations we show how the Coriolis force leads to coupling and conversion between both surface wave types depending on latitude, propagation direction, frequency, and local velocity structure. Surface wave coupling is most efficient for periods where the modes have similar phase velocities, a condition that is equivalent to the selection rules of the angular degree in the normal-mode framework, a phenomenon that we refer to as resonant coupling. In the time-domain, resonant coupling gradually converts energy from one wave type–Rayleigh waves or Love wave–into the other, which then propagates independently. Due to the lateral heterogeneity, the condition of equal phase velocity renders the rotational coupling location-dependent. East-west oriented ray path segments and segments at high latitudes (across the Poles) only weakly couple the fundamental mode Rayleigh and Love waves while coupling is strongest for propagation along the meridians across the equator. At 250 s period, where Love and Rayleigh waves have similar phase velocities, the net energy transfer from Rayleigh to Love wave reaches about 10% for one orbit.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3