Field surveys and numerical modelling of the 2004 December 26 Indian Ocean tsunami in the area of Mumbai, west coast of India

Author:

Heidarzadeh Mohammad1ORCID,Rabinovich Alexander23,Kusumoto Satoshi4,Rajendran C P5

Affiliation:

1. Department of Civil and Environmental Engineering, Brunel University London, Uxbridge UB83PH, UK

2. Institute of Ocean Sciences, Sidney, BC V8L 4B2, Canada

3. Shirshov Institute of Oceanology, Russian Academy of Sciences, Moscow 117997, Russia

4. Japan Agency for Marine-Earth Science and Technology, Yokohama 236-0001, Japan

5. Jawaharlal Nehru Centre for Advanced Scientific Research, Bangalore 560064, India

Abstract

ABSTRACT In the aftermath of the 2004 Indian Ocean (Sumatra-Andaman) tsunami, numerous survey teams investigated its effects on various locations across the Indian Ocean. However, these efforts were focused only on sites that experienced major destruction and a high death toll. As a consequence, some Indian Ocean coastal megacities were not examined. Among the cities not surveyed was Mumbai, the principal west coast port and economical capital of India with a population of more than 12 million. Mumbai is at risk of tsunamis from two major subduction zones in the Indian Ocean: the Sumatra–Andaman subduction zone (SASZ) and the Makran subduction zone (MSZ). As a part of the present study, we conducted a field survey of the 2004 Indian Ocean tsunami effects in Mumbai, analysed the available tide gauge records and performed tsunami simulations. Our field survey in 2018 January found run-up heights of 1.6−3.3 m in the Mumbai area. According to our analysis of tide gauge data, tsunami trough-to-crest heights in Okha (550 km to the north of Mumbai) and in Mormugao (410 km to the south of Mumbai) were 46 cm and 108 cm, respectively. Simulations of a hypothetical MSZ Mw 9.0 earthquake and tsunami, together with the Mw 9.1 Sumatra–Andaman earthquake and tsunami, show that the tsunami heights generated in Mumbai by an MSZ tsunami would be significantly larger than those generated by the 2004 Sumatra–Andaman tsunami. This result indicates that future tsunami hazard mitigation for Mumbai needs to be based on a potential large MSZ earthquake rather than an SASZ earthquake.

Funder

Natural Environment Research Council

Royal Society

Board of Research in Nuclear Sciences

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3