Modulation of seismic noise near the San Jacinto fault in southern California: origin and observations of the cyclical time dependence and associated crustal properties

Author:

Martynov Vladislav G1,Astiz Luciana2,Kilb Debi1ORCID,Vernon Frank L1

Affiliation:

1. Institute of Geophysics and Planetary Physics, Scripps Institution of Oceanography, La Jolla, CA 92093, USA

2. National Science Foundation, 2415 Eisenhower Avenue, Alexandria, VA 22314, USA

Abstract

SUMMARY We examine the cyclic amplitude variation of seismic noise recorded by continuous three-component broad-band seismic data with durations spanning 91–713 d (2008–2011) from three different networks: Anza seismic network, IDA network and the transportable seismic array. These stations surround the San Jacinto Fault Zone (SJFZ) in southern California. We find the seismic noise amplitudes exhibit a cyclical variation between 0.3 and 7.2 Hz. The high-frequency (≥0.9 Hz) noise variations can be linked to human activity and are not a concern. Our primary interest is signals in the low frequencies (0.3–0.9 Hz), where the seismic noise is modulated by semi-diurnal tidal mode M2. These long-period (low-frequency) variations of seismic noise can be attributed to a temporal change of the ocean waves breaking at the shoreline, driven by ocean tidal loading. We focus on the M2 variation of seismic noise at f = 0.6 Hz, travelling distances of ∼92 km through the crust from offshore California to the inland Anza, California, region. Relative to the shoreline station, data from the inland stations show a phase lag of ∼ –12°, which we attribute to the cyclic change in M2 that can alter crustal seismic attenuation. We also find that for mode M2 at 0.6 Hz, the amplitude variations of the seismic quality factor (Q) depend on azimuth and varies from 0.22 per cent (southeast to northwest) to 1.28 per cent (northeast to southwest) with Q = 25 for Rayleigh waves. We propose the direction dependence of the Q variation at 0.6 Hz reflects the preferred orientation of subfaults parallel to the main faulting defined by the primarily N45°W strike of the SJFZ.

Funder

U.S. Department of Energy

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3