Full waveform inversion by proximal Newton method using adaptive regularization

Author:

Aghamiry H S1ORCID,Gholami A2ORCID,Operto S1ORCID

Affiliation:

1. Université Côte d’Azur, CNRS, Observatoire de la Côte d’Azur, IRD , Géoazur, Valbonne, France

2. University of Tehran, Institute of Geophysics, Tehran, Iran

Abstract

SUMMARY Regularization is necessary for solving non-linear ill-posed inverse problems arising in different fields of geosciences. The base of a suitable regularization is the prior expressed by the regularizer, which can be non-adaptive or adaptive (data-driven), smooth or non-smooth, variational-based or not. Nevertheless, tailoring a suitable and easy-to-implement prior for describing geophysical models is a non-trivial task. In this paper, we propose two generic optimization algorithms to implement arbitrary regularization in non-linear inverse problems such as full-waveform inversion (FWI), where the regularization task is recast as a denoising problem. We assess these optimization algorithms with the plug-and-play block matching (BM3D) regularization algorithm, which determines empirical priors adaptively without any optimization formulation. The non-linear inverse problem is solved with a proximal Newton method, which generalizes the traditional Newton step in such a way to involve the gradients/subgradients of a (possibly non-differentiable) regularization function through operator splitting and proximal mappings. Furthermore, it requires to account for the Hessian matrix in the regularized least-squares optimization problem. We propose two different splitting algorithms for this task. In the first, we compute the Newton search direction with an iterative method based upon the first-order generalized iterative shrinkage-thresholding algorithm (ISTA), and hence Newton-ISTA (NISTA). The iterations require only Hessian-vector products to compute the gradient step of the quadratic approximation of the non-linear objective function. The second relies on the alternating direction method of multipliers (ADMM), and hence Newton-ADMM (NADMM), where the least-squares optimization subproblem and the regularization subproblem in the composite objective function are decoupled through auxiliary variable and solved in an alternating mode. The least-squares subproblem can be solved with exact, inexact, or quasi-Newton methods. We compare NISTA and NADMM numerically by solving FWI with BM3D regularization. The tests show promising results obtained by both algorithms. However, NADMM shows a faster convergence rate than NISTA when using L-BFGS to solve the Newton system.

Funder

Chevron

Shell United States

Total

University of Tehran

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3