Humidity related magnetite alteration in an experimental setup

Author:

Zhang Qi1ORCID,Appel Erwin1,Stanjek Helge2,Byrne James M34,Berthold Christoph5,Sorwat Julian3,Rösler Wolfgang1,Seemann Timo2

Affiliation:

1. Geophysics, Center for Applied Geoscience, University of Tübingen, Hölderlinstr.12, 72074 Tübingen, Germany

2. Clay and Interface Mineralogy (CIM), RWTH Aachen University, Bunsenstraße 8, 52072 Aachen, Germany

3. Geomicrobiology, Center for Applied Geoscience, University of Tübingen, Hölderlinstr.12, 72074 Tübingen, Germany

4. School of Earth Sciences, University of Bristol, Wills Memorial Building, Queens Road, Bristol BS81RJ, United Kingdom

5. Mineralogy and Geodynamics, Department of Geosciences, University of Tübingen, Lothar-Meyer Bau, Wilhelmstr. 56, 72074 Tübingen, Germany

Abstract

SUMMARY Low-temperature oxidation (LTO) of magnetite is an alteration process which occurs under normal atmospheric conditions, causing maghemitization. The use of magnetic properties as palaeoclimate proxies requires improved understanding of how humidity and temperature affect such processes. We exposed natural magnetite, with grain size ranging from <1 to ∼30 μm, to different humidity conditions at room temperature and 70 °C for 1 yr. Changes in room temperature setups were very minor, but in all 70 °C setups alteration was detected by magnetic and mineralogical properties. Lowering of the Verwey transition temperature (Tv) turned out to be the most sensitive indicator of LTO, and also lattice constants correlate well with the shift of Tv. Thermomagnetic curves and XRD-results indicate that LTO affects the entire volume of the particles rather than only surface layers. The sample exposed to high relative humidity (rH) >90  per cent at 70 °C showed the strongest degree of LTO with an increase of the oxidation degree by ∼3 per cent according to Tv, and it was the only setup where partial alteration to hematite was indicated by Mössbauer analysis. The sample with extremely dry conditions (rH of ∼5 per cent) at 70 °C, and the sample that was exposed to cycles of high and low humidity in 2-weeks alternation at 70 °C, both revealed a smaller degree of LTO. The smallest change of the high temperature setups was observed for the sample with intermediate rH of ∼13 per cent. The results suggest a non-linear sensitivity of magnetite alteration to humidity conditions, high humidity strongly favours alteration, but alteration is strongly reduced when extreme humidity alternates with dry conditions, suggesting an importance of seasonality in natural weathering.

Funder

Deutsche Forschungsgemeinschaft

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3