Automatic high-resolution microseismic event detection via supervised machine learning

Author:

Qu Shan1,Guan Zhe2ORCID,Verschuur Eric1,Chen Yangkang3

Affiliation:

1. Delft university of technology, Departments of Imaging Physics, Mekelweg 2, 2628 CD Delft, Netherlands

2. Rice University, Applied Physics Program, Houston, TX, USA

3. School of Earth Sciences, Zhejiang University, Hangzhou, Zhejiang Province 310027, China

Abstract

SUMMARYMicroseismic methods are crucial for real-time monitoring of the hydraulic fracturing dynamic status during the development of unconventional reservoirs. However, unlike the active-source seismic events, the microseismic events usually have low signal-to-noise ratio (SNR), which makes its data processing challenging. To overcome the noise issue of the weak microseismic events, we propose a new workflow for high-resolution microseismic event detection. For the preprocessing, fix-sized segmentation with a length of 2*wavelength is used to divide the data into segments. Later on, 191 features have been extracted and used as the input data to train the support vector machine (SVM) model. These features include 63 1-D time/spectral-domain features, and 128 2-D texture features, which indicate the continuity, smoothness, and irregularity of the events/noise. The proposed feature extraction maximally exploits the limited information of each segment. Afterward, we use a combination of univariate feature selection and random-forest-based recursive feature elimination for feature selection to avoid overfitting. This feature selection strategy not only finds the best features, but also decides the optimal number of features that are needed for the best accuracy. Regarding the training process, SVM with a Gaussian kernel is used. In addition, a cross-validation (CV) process is implemented for automatic parameter setting. In the end, a group of synthetic and field microseismic data with different levels of complexity show that the proposed workflow is much more robust than the state-of-the-art short-term-average over long-term-average ratio (STA/LTA) method and also performs better than the convolutional-neural-networks (CNN), for this case where the amount of training data sets is limited. A demo for the synthetic example is available: https://github.com/shanqu91/ML_event_detection_microseismic.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference57 articles.

1. A robust neural network-based approach for microseismic event detection;Akram,2017

2. Automatic phase pickers: their present use and future prospects;Allen;Bull. seism. Soc. Am.,1982

3. Automatic earthquake recognition and timing from single traces;Allen;Bull. seism. Soc. Am.,1978

4. A technique for identifying microseismic multiplets and application to the valhall field, north seaidentifying microseismic multiplets;Arrowsmith;Geophysics,2006

5. A training algorithm for optimal margin classifiers;Boser,1992

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3