Seismicity clusters in Central Chile: investigating the role of repeating earthquakes and swarms in a subduction region

Author:

Valenzuela-Malebrán Carla12ORCID,Cesca Simone1,Ruiz Sergio3,Passarelli Luigi4ORCID,Leyton Felipe5,Hainzl Sebastian12,Potin Bertrand3,Dahm Torsten12ORCID

Affiliation:

1. GFZ German Research Centre for Geosciences, Potsdam 14473, Germany. E-mail: carlav@gfz-potsdam.de

2. Universität Potsdam, Institute of Earth and Environmental Sciences, 14476 Potsdam, Germany

3. Geophysics Department, Universidad de Chile, Blanco Encalada 2002 Santiago, Chile

4. Physical Sciences and Engineering Division (PSE), King Abdullah University of Science and Technology (KAUST), Thuwal 23955–6900, Saudi Arabia

5. National Seismological Center, Universidad de Chile, Blanco Encalada 2002 Santiago, Chile

Abstract

SUMMARY Seismicity along subduction interfaces is usually dominated by large main-shock–aftershock sequences indicative of a continuum distribution of highly coupled large asperities. In the past decades, however, the increased resolution of seismic catalogues at some subduction zone seems to indicate instead a more complex rheological segmentation of the interface. Large and megathrust earthquake ruptures seem interspersed among regions of low seismic coupling and less stress buildup. In this weaker zone, the strain is primarily released via a combination of moderate-size swarm-like seismicity and aseismic slip. Along the Chilean subduction zone, the densification of the seismic network allowed for the identification of localized seismic clusters, some of them appearing in the form of swarms before megathrust earthquakes. The origin and driving processes of this seismic activity have not yet been identified. In this study, we follow a systematic approach to characterize the seismicity at two persistent clusters in Central Chile, one located offshore Navidad and one inland, at ∼40 km depth beneath Vichuquén, which occurred throughout ∼20 yr. We investigated these clusters, by deriving high-resolution hypocentral locations and moment tensors and performing a detailed analysis of spatio-temporal patterns, magnitude and interevent time distributions of the clustered earthquakes. Both clusters are characterized by weak to moderate seismicity (below Mw 6) and stand out as clear seismicity rate and Benioff strain anomalies. At the Navidad cluster, seismicity occurs in the form of swarms, with a characteristic duration of 2–7 d and location and thrust mechanisms compatible with activity on the slab interface. Conversely, we find at Vichuquén activity dominated by thrust earthquakes occurring as repeaters on the slab interface, with a slip rate of approximately ∼5.0 cm yr−1. We attribute these clusters to local features of the subducting plate: the Navidad swarms are likely driven by repeated high pore pressure transients along a pre-fractured patch of the slab, while the seismicity at the Vichuquén cluster is interpreted as the result of a subducting seamount. Both clusters have been active before and after the Mw 8.8 Maule earthquake and persisted afterwards with the seismicity decay following the Omori law. These interactions are especially evident for the Vichuquén cluster, where the seismicity rate increased considerably after the Maule earthquake and continues to be an area of clearly elevated seismicity rate compared to its surroundings.

Funder

National Commission for Scientific and Technological Research

CONICYT

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3