A multichannel deconvolution method to retrieve source–time functions: application to the regional Lg wave

Author:

Gallegos Andrea1,Xie Jiakang12

Affiliation:

1. Air Force Research Laboratory, 3550 Aberdeen Avenue Southeast, Albuquerque, NM 87117, USA

2. Advanced Technology Division, Array Information Technology, Inc., Greenbelt, MD 20770, USA

Abstract

SUMMARY The retrieval of high-frequency seismic source–time functions (STFs) of similar earthquakes tends to be an ill-posed problem, causing unstable solutions. This is particularly true when waveforms are complex and band-limited, such as the regional phase Lg. We present a new procedure implementing the multichannel deconvolution (MCD) method to retrieve robust and objective STF solutions. The procedure relies on well-developed geophysical inverse theory to obtain stable STF solutions that jointly minimize the residual misfit, model roughness and data underfitting. MCD is formulated as a least-squares inverse problem with a Tikhonov regularization. The problem is solved using a convex optimization algorithm which rapidly converges to the global minimum while accommodating physical solution constraints including positivity, causality, finiteness and known seismic moments. We construct two L-shaped curves showing how the solution residual and roughness vary with trial solution durations. The optimal damping is chosen when the curves have acceptable levels while exhibiting no oscillations caused by solution instability. The optimal solution duration is chosen to avoid a rapidly decaying segment of the residual curve caused by parameter underfitting. We apply the MCD method to synthetic Lg data constructed by convolving a real Lg waveform with five pairs of simulated STFs. Four pairs consist of single triangular or parabolic pulses. The remaining pair consists of multipulse STFs with a complex, four-spike large STF. Without noise, the larger STFs in all single-pulse cases are well-recovered with Tikhonov regularization. Shape distortions are minor and duration errors are within 5 per cent. The multipulse case is a rare well-posed problem for which the true STFs are recovered without regularization. When a noise of ∼20 per cent is added to the synthetic data, the MCD method retrieves large single-pulse STFs with minor shape distortions and small duration errors (from 0 to 18 per cent). For the multipulse case, the retrieved large STF is overly smeared, losing details in the later portion. The small STF solutions for all cases are less resilient. Finally, we apply the MCD method to Lg data from two pairs of moderate earthquakes in central Asia. The problem becomes more ill-posed owing to lower signal-to-noise ratios (as low as 3) and non-identical Green's functions. A shape constraint of the small STF is needed. For the larger events with M5.7 and 5.8, the retrieved STFs are asymmetric, rising sharply and lasting about 2.0 and 2.5 s. We estimate radiated energies of 2.47 × 1013 and 2.53 × 1013 J and apparent stresses of 1.4 and 1.9 MPa, which are very reasonable. Our results are very consistent with those obtained in a previous study that used a very different, less objective ‘Landweber deconvolution’ method and a pre-fixed small STF duration. Novel improvements made by our new procedure include the application of a convex algorithm rather than a Newton-like method, a procedure for simultaneously optimizing regularization and solution duration parameters, a shape constraint for the smaller STF, and application to the complex Lg wave.

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference101 articles.

1. Shear-wave attenuation along the San Andreas Fault Zone in Central California;Bakun;Bull. seism. Soc. Am.,1975

2. Radiated energy of great earthquakes from teleseismic empirical Green's function deconvolution;Baltay;Pure appl. Geophys.,2014

3. Investigation of Lg Blockage and the Transportability of Regional Discriminants in the Middle East.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3