Shear-wave splitting beneath Fennoscandia — evidence for dipping structures and laterally varying multilayer anisotropy

Author:

Grund Michael1ORCID,Ritter Joachim R R1

Affiliation:

1. Karlsruhe Institute of Technology (KIT), Geophysical Institute, Hertzstr. 16, 76187 Karlsruhe, Germany

Abstract

SUMMARY The geodynamic evolution of Fennoscandia in northern Europe (Finland, Sweden and Norway) is coined by ca. 3 Ga history of tectonic processes including continental growth in its central and eastern parts and Neogene uplift processes of the Scandinavian mountains (Scandes) located along its western edge. Many details are still under debate and we contribute with new findings from studying deep-seated seismic anisotropy. Using teleseismic waveforms of more than 260 recording stations (long-running permanent networks, previous temporary experiments and newly installed temporary stations) in the framework of the ScanArray experiment, we present the most comprehensive study to date on seismic anisotropy across Fennoscandia. The results are based on single and multi-event shear-wave splitting analysis of core refracted shear waves (SKS, SKKS, PKS and sSKS). The splitting measurements indicate partly complex, laterally varying multilayer anisotropy for individual areas. Consistent measurements at permanent and temporary recording stations over several years and for seismic events of specific source regions allow us to robustly constrain dipping anisotropic structures by adding systematic forward modelling. Although the data coverage is partly limited to only few source regions, our findings support concepts of continental growth due to individual episodes of (paleo-) subduction, each affecting a plunging of the anisotropic fast axis direction due to collisional deformation. Along the northern Scandes the fast axis direction (ϕ) is parallel to the mountain range (NE-SW), whereas an NNW-SSE trend dominates across the southern Scandes. In the south, across the Sorgenfrei–Tornquist Zone, a NW-SE trend of ϕ dominates which is parallel to this suture zone. The Oslo Graben is characterized by an NNE-SSW trend of ϕ. In northern Norway and Sweden (mainly Paleoproterozoic lithosphere), a dipping anisotropy with ϕ towards NE prevails. This stands in contrast to the Archean domain in the NE of our study region where ϕ is consistently oriented NNE-SSW. In the Finnish part of the Svecofennian domain, a complex two-layer anisotropy pattern is found which may be due to lateral variations around the seismic stations and which requires a higher data density than ours for a unique model building. Based on these findings our study demonstrates the importance of long recording periods (in the best case > 10 yr) to obtain a sufficient data coverage at seismic stations, especially to perform meaningful structural modelling based on shear-wave splitting observations.

Funder

Deutsche Forschungsgemeinschaft

Helmholtz-Zentrum Potsdam - Deutsches GeoForschungsZentrum GFZ

Københavns Universitet

Universitetet i Oslo

Karlsruher Institut für Technologie

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3