Enhanced magnetic fields within a stratified layer

Author:

Hardy Colin M1ORCID,Livermore Philip W2ORCID,Niesen Jitse3ORCID

Affiliation:

1. EPSRC Centre for Doctoral Training in Fluid Dynamics, University of Leeds, Leeds, LS29JT, UK

2. School of Earth and Environment, University of Leeds, Leeds LS29JT, UK

3. School of Mathematics, University of Leeds, Leeds LS29JT, UK

Abstract

SUMMARY Mounting evidence from both seismology and numerical experiments on core composition suggests the existence of a layer of stably stratified fluid at the top of Earth’s outer core. In such a layer, a magnetostrophic force balance and suppressed radial motion lead to stringent constraints on the magnetic field, named Malkus constraints, which are a much more restrictive extension of the well known Taylor constraints. Here, we explore the consequences of such constraints for the structure of the core’s internal magnetic field. We provide a new simple derivation of these Malkus constraints, and show solutions exist which can be matched to any external potential field with arbitrary depth of stratified layer. From considerations of these magnetostatic Malkus constraints alone, it is therefore not possible to uniquely infer the depth of the stratified layer from external geomagnetic observations. We examine two models of the geomagnetic field defined within a spherical core, which obey the Taylor constraints in an inner convective region and the Malkus constraints in an outer stratified layer. When matched to a single-epoch geomagnetic potential field model, both models show that the toroidal magnetic field within the outer layer is about 100 times stronger compared to that in the inner region, taking a maximum value of 8 mT at a depth of 70 km. The dynamic regime of such a layer, modulated by suppressed radial motion but also a locally enhanced magnetic field, may therefore be quite distinct from that of any interior dynamo.

Funder

Engineering and Physical Sciences Research Council

University of Leeds

NERC

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3