Stagnant lid convection with temperature-dependent thermal conductivity and the thermal evolution of icy worlds

Author:

Deschamps Frédéric1

Affiliation:

1. Institute of Earth Sciences, Academia Sinica, 128 Academia Road, Sector 2, Nangang, Taipei 11529, Taiwan

Abstract

SUMMARY Convection is an efficient process to release heat from planetary interiors, but its efficiency depends on the detailed properties of planetary mantles and materials. A property whose impact has not yet been studied extensively is the temperature dependence of thermal conductivity. Because thermal conductivity controls heat fluxes, its variations with temperature may alter heat transfer. Here, I assess qualitatively and quantitatively the influence of temperature-dependent thermal conductivity on stagnant lid convection. Assuming that thermal conductivity varies as the inverse of temperature $(k \propto 1/T)$, which is the case for ice Ih, the main component of outer shells of solar System large icy bodies, I performed numerical simulations of convection in 3-D-Cartesian geometry with top-to-bottom viscosity and conductivity ratios in the ranges 105 ≤ Δη ≤ 108 and 1 ≤ Rk ≤ 10, respectively. These simulations indicate that with increasing Rk, and for given values of the Rayleigh number and Δη, heat flux is reduced by a factor Rk0.82, while the stagnant lid is thickening. These results have implications for the structures and thermal evolutions of large icy bodies, the impact of temperature-dependent conductivity being more important with decreasing surface temperature, Tsurf. The heat fluxes and thermal evolutions obtained with temperature-dependent conductivity are comparable to those obtained with constant conductivity, provided that the conductivity is fixed to its value at the bottom or in the interior of the ice shell, that is, around 2.0–3.0 W m−1 K−1, depending on the body. By contrast, temperature-dependent conductivity leads to thicker stagnant lids, by about a factor 1.6–1.8 at Pluto (Tsurf = 40 K) and a factor 1.2–1.4 at Europa (Tsurf = 100 K), and smaller interior temperatures. Overall, temperature-dependent thermal conductivity therefore provides more accurate descriptions of the thermal evolutions of icy bodies.

Funder

National Science Council of Taiwan

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3