Earthquake source properties from analysis of dynamic ruptures and far-field seismic waves in a damage-breakage model

Author:

Kurzon Ittai1ORCID,Lyakhovsky Vladimir1ORCID,Ben-Zion Yehuda2

Affiliation:

1. Geological Survey of Israel, Jerusalem, Israel

2. Department of Earth Sciences and Southern California Earthquake Center, University of Southern California, Los Angeles, CA, USA

Abstract

SUMMARY We present results on earthquake source properties using simulations of dynamic rupture and radiated seismic waves in a continuum damage-breakage rheological model. The source properties are derived by (1) calculation of source parameters directly from the simulated ruptures and (2) observational processing of the far-field radiated waves. The seismic potency, moment, damage-related source term, rupture velocity and effective rigidity are estimated directly from the simulated sources, while the radiation pattern, dominant frequency, directivity, rupture velocity and seismic potency are calculated through analysis of the radiated waves. The potencies calculated directly from the sources are used to validate those estimated by wave analysis. The effective rigidity at the rupture zone during failure is about four times smaller than that of the intact surrounding rocks. Rupture velocity can be estimated by far-field measurements for sources with unidirectional ruptures with prominent rupture directivity. The dominant frequencies for P and S waves $f_d^S/f_d^P$ reflect clearly the rupture duration and have a ratio in the range 0.87–1.12. Seismic potencies obtained through processing the P or S waves have an overall ±15 per cent difference from the source reference values. The calculated values of the coefficient ${\rm{\kappa }}$, relating rupture length to corner or dominant frequency, have strong dependency on the source geometry. Using a strain-rate dependent ${\rm{\kappa }}$, we obtain much weaker dependencies of strain-drop on the dominant frequencies, $\Delta {\rm{\varepsilon }} \propto {( {{f_d}} )^{3/4}}$, than the classical cube-dependency between stress drop and corner frequency, and corresponding weak dependency of average slip on dominant frequency, ${\rm{\bar{D}}} \propto {( {{f_d}} )^{1/2}}$. The obtained analysis procedure and relations can be used to reduce the uncertainty of source properties derived from far-field seismic waves.

Funder

United States - Israel Binational Science Foundation

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3