Sea surface network optimization for tsunami forecasting in the near field: application to the 2015 Illapel earthquake

Author:

Navarrete P1,Cienfuegos R12ORCID,Satake K3,Wang Y3ORCID,Urrutia A1ORCID,Benavente R14ORCID,Catalán P A156,Crempien J17ORCID,Mulia I3ORCID

Affiliation:

1. Centro de Investigación para la Gestión Integrada del Riesgo de Desastres (CIGIDEN), Conicyt/Fondap/15110017, Santiago 7820436, Chile

2. Departamento de Ingeniería Hidráulica y Ambiental, Escuela de Ingeniera, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile

3. Earthquake Research Institute, The University of Tokyo, Tokyo 1130032, Japan

4. Departamento de Ingeniería Civil, Facultad de Ingeniería, Universidad Católica de la Santísima Concepción, Concepción 4090541, Chile

5. Departamento de Obras Civiles, Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile

6. Centro Científico Tecnológico de Valparaíso (CCTVal), Universidad Técnica Federico Santa María, Valparaíso 2390123, Chile

7. Departamento de Ingeniería Estructural y Geotécnica, Escuela de Ingeniera, Pontificia Universidad Católica de Chile, Santiago 7820436, Chile

Abstract

SUMMARY We propose a method for defining the optimal locations of a network of tsunameters in view of near real-time tsunami forecasting using sea surface data assimilation in the near and middle fields, just outside of the source region. The method requires first the application of the empirical orthogonal function analysis to identify the potential initial locations, followed by an optimization heuristic that minimizes a cost-benefit function to narrow down the number of stations. We apply the method to a synthetic case of the 2015 Mw8.4 Illapel Chile earthquake and show that it is possible to obtain an accurate tsunami forecast for wave heights at near coastal points, not too close to the source, from assimilating data from three tsunameters during 14 min, but with a minimum average time lag of nearly 5 min between simulated and forecasted waveforms. Additional tests show that the time lag is reduced for tsunami sources that are located just outside of the area covered by the tsunameter network. The latter suggests that sea surface data assimilation from a sparse network of stations could be a strong complement for the fastest tsunami early warning systems based on pre-modelled seismic scenarios.

Funder

CONICYT

National Oceanic and Atmospheric Administration

University of Tokyo

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

Reference64 articles.

1. Reliability of a tsunami source model derived from fault parameter;Aida;J. Phys. Earth,1978

2. Ocean observations required to minimize uncertainty in global tsunami forecasts, warnings, and emergency response;Angove;Front. Mar. Sci,2019

3. The 16 September 2015 Chile tsunami from the post-tsunami survey and numerical modeling perspectives;Aránguiz;Pure appl. Geophys.,2016

4. Optimal Placement of Tsunami Buoys Using Mesh Adaptive Direct Searches;Audet,2008

5. ‘Easywave;Babeyko,2012

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3