Effects of electrical anisotropy on long-offset transient electromagnetic data

Author:

Liu Yajun12,Yogeshwar Pritam2,Hu Xiangyun13,Peng Ronghua1,Tezkan Bülent2,Mörbe Wiebke2,Li Jianhui13

Affiliation:

1. Institute of Geophysics and Geomatics, China University of Geosciences, Wuhan 430074, China

2. Institute of Geophysics and Meteorology, University of Cologne, Cologne 50923, Germany

3. Hubei Subsurface Multi-scale Imaging Key Laboratory, Wuhan 430074, China

Abstract

SUMMARY Electrical anisotropy of formations has been long recognized by field and laboratory evidence. However, most interpretations of long-offset transient electromagnetic (LOTEM) data are based on the assumption of an electrical isotropic earth. Neglecting electrical anisotropy of formations may cause severe misleading interpretations in regions with strong electrical anisotropy. During a large scale LOTEM survey in a former mining area in Eastern Germany, data was acquired over black shale formations. These black shales are expected to produce a pronounced bulk anisotropy. Here, we investigate the effects of electrical anisotropy on LOTEM responses through numerical simulation using a finite-volume time-domain (FVTD) algorithm. On the basis of isotropic models obtained from LOTEM field data, various anisotropic models are developed and analysed. Numerical results demonstrate that the presence of electrical anisotropy has a significant influence on LOTEM responses. Based on the numerical modelling results, an isolated deep conductive anomaly presented in the 2-D isotropic LOTEM electric field data inversion result is identified as a possible artifact introduced by using an isotropic inversion scheme. Trial-and-error forward modelling of the LOTEM electric field data using an anisotropic conductivity model can explain the data and results in a reasonable quantitative data fit. The derived anisotropic 2-D model is consistent with the prior geological information.

Funder

National Natural Science Foundation of China

Publisher

Oxford University Press (OUP)

Subject

Geochemistry and Petrology,Geophysics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3